• Title/Summary/Keyword: durability properties

Search Result 1,600, Processing Time 0.039 seconds

Properties of Strength Development of Concrete at Early Age Using High Fineness Cement and Fly Ash (고분말도 시멘트와 플라이애시를 치환한 콘크리트의 조기강도 발현 특성)

  • Ha, Jung-Soo;Kim, Han-Sic;Lee, Young-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.154-160
    • /
    • 2018
  • Cement industries are considered key industries for reducing carbon emissions, and efforts are off the ground to reduce the use of cement in the concrete sector. As a part of this effort, research is off the ground to utilize a large amount of industrial by-products that can be used as a substitute for a part of cement. Concrete using industrial by-products has advantages such as durability, environment friendliness and economical efficiency, but there are problems such as retarding and early-age strength deterioration. Therefore, this study aimed to reduce the use of cement and solve the problem of early-age strength deterioration while using fly ash, which is an industrial by-product. Accordingly, it was confirmed that the strength was improved at all ages irrespective of curing temperature by accelerating the hydration reaction by using high fineness cement. Subsequently, high fineness cement was partially replaced with fly ash and the strength development characteristics were examined. As a result, it was possible to exhibit strength equal to or higher than ordinary portland cement even at the early age. Also, it was confirmed that even when the fly ash is replaced by 30%, it is possible to shorten the time for dismantling the forms of vertical and horizontal members.

A Quality Comparison of Traditional Korean Papers: Mixtures of Bast-Fiber with Straw pulp(Rice straw paper) in Different Composition Ratio (고정(藁精) 혼합비율에 따른 한지의 물성 비교)

  • Jung, Sun-Young
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.1 s.119
    • /
    • pp.48-55
    • /
    • 2007
  • The aim of this article is to review the general property of the famous traditional Korean paper, "rice straw paper"(Bast-Fiber mixed with straw pulp), and to compare the paper qualities varying with the composition ratio of straw pulp, in order to revive the traditional paper in modem Korea. The experiment was carried out by making first the two different mixture papers, i. e., one is the paper of 50% bast fiber mixed with 50% straw pulp, and the other is the paper of 75% bast fiber with 25% oats straw pulp, and finally the 100% bast fiber paper was made for the purpose of comparison. The qualitative properties of these three kinds of paper with the different mixing ratio of the straw pulp were evaluated, and the findings of the experiment can be summarized as follow: 1. As to the quality aspects of the paper strength like tensile strength, breaking length, elongation, and tear strength, the test proved the 100% bast fiber paper as best, and the 50% mixed paper as the next good one. 2. In aspect of the printing adaptability such as density, opacity, brightness, whiteness, lab colors, air permeability, and roughness, the 50% mixed paper proved to be the best, due to the short cells in the straw pulp. 3. As to the air permeability, the larger ratio of straw pulp was found to be the lesser, and 75% bast fiber with 25% straw pulp mixture paper and the 100% bast fiber one were found 1/5 degree efficient. 4. In terms of the water absorption degree, 100% bast fiber paper was the fastest, but in case of mixture paper, 50% mixed one was a little faster up to the point of 1cm, while the two kinds of mixed ones appear to be almost similar to each other beyond the point. 5. The straw pulp mixed paper, especially the 50% mixed one was evaluated as the highest by the calligraphers who had experienced using the papers in terms of movement and feeling of the caligraphy and painting. In addition, although the 25% mixed paper is judged to be good for book printing because of the strength, the 50% mixed paper can be thought to be more desirable for painting and calligraphy. In conclusion, we will be able to make the quality paper with durability, by mixing the straw pulp with the bast fiber in proper ratio, following the tradition of Korean paper making.

Preparation of Cellulose-Based Edible Film and its Physical Characteristics (Cellulose를 이용한 가식성(可食性) Film의 제조와 물리적 특성연구)

  • Song, Tae-Hee;Kim, Chul-Jai
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.1-7
    • /
    • 1996
  • Three formulations were used to prepare the cellulose-based edible films consisting of hydrocolloid and lipids; film A made by coating method, films B and C by emulsion method, which were formed in a thin layer glass plate and then dried. Films A, B and C were all approximately 0.03 mm thick with 1-3% moisture, 59-68% lipid, and almost whitish color. Film A was better in tensile strength, and lipids affected water vapor permeability on three films, in which films A and B did not differ significantly. Water vapor permeability of film A did not change but those of films B and C decreased significantly after storage for 8 weeks at $-15^{\circ}C$. Oxygen transmission rate and oxygen permeability of films A and C did not differ and changed significantly after 8-week storage at $-15^{\circ}C$. Under scanning electron microscope (SEM) observation on the structural characteristics of each film, film A indicated relatively uniform and smooth surface coatings of beeswax, while films B and C had individual lipid crystals and could be discerned. As a result, film A was better than films B and C in respect of physical properties, but the selection of useful film depended upon which physical property was more functional. Moreover, it was desirable in some cases for using films B and C because of their easiness of preparation and cold storage durability. It will be further needed to investigate how to formulate films B and C to have more unique surface characteristics, and to reduce water vapor and oxygen transmission rates.

  • PDF

Development of Multi-functional Mulch Papers and Evaluation of Their Performance-Studies for Reducing the Basis Weight of Mulch Paper- (다기능성 멀칭지의 개발 및 적용성 평가(제l보)-멀칭지의 저평량화를 위한 연구-)

  • Lee, Hak-Lae;Ryu, Jung-Yong;Youn, Hye-Jung;Joo, Sung-Bum;Park. Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.3
    • /
    • pp.38-45
    • /
    • 1998
  • Soil and water contamination caused by the abundant use of agricultural chemicals including herbicides and fertilizers draws public concerns since these chemicals may pollute the agricultural lands as well as the food products grown on these lands. As a method to reduce the use of agricultural chemicals mulching with thin plastic film has been commonly practised for many years. Although use of the plastic film for mulching is very effective in preventing the growth of weed, it is almost impossible to remove all of the plastic film from the agricultural land and the remaining film eventually contaminates the soils. Therefore, it is very imperative to develop a mulching material that decomposes completely to prevent soil pollution problems and to enhance the competitive edge of domestic agriculture. Mulch papers are believed to have many positive characteristics in preventing problems caused by the plastic mulch film since it decomposes completely after use. However, the basis weight of mulch papers needs to be reduced to improve its handling properties and to reduce the raw material costs of pulps. In this paper the possibilities of using domestic old corrugated containers in producing mulch papers were examined. Also use of unbleached softwood kraft pulps and dry strength additives were exploited along with two-layered sheet forming technology in decreasing the basis weight of the mulch paper. Results showed that reduction of 20g/$m^2$ of basis weight of mulch paper was possible by the appropriate raw material selection and application of strength resin. To use the mulch papers in paddy fields, however, further research to improve its durability should be pursued.

  • PDF

Study on the Demand Characteristics of Epoxy Resins Applied to the Restoration of Ceramics (도자기 복원에 사용되는 에폭시계 고분자수지의 요구 특성 연구)

  • Nam, Byeongjik;Jeong, Seri;Jang, Sungyoon
    • Journal of Adhesion and Interface
    • /
    • v.13 no.4
    • /
    • pp.171-181
    • /
    • 2012
  • The demand characteristics of the conventional 12 kinds of epoxy resins which have been used for restoration of the ceramic relics were investigated to provide standards of the effective materials in this study. The result of durability analysis showed that a liquid type is more effective in ceramic relics (low damage, high strength), and a paste type is more effective in earthenware relics (high damage, low strength). The result of workability analysis appears that the liquid type is higher than the paste type, and a slow curing type is higher than a fast curing type in surface hardness. Therefore, in the case of the liquid type which is hard to reprocess due to high surface hardness, it is necessary to conduct a study on improving physical properties by adding filler. The result of the gloss analysis on epoxy resins showed that the liquid type (colorless) has higher gloss than the paste type, and the slow curing type has higher gloss than the fast curing type in liquid types. CDK-520A/520B and Araldite SV 427-2/HV 427-1 showed the most similar gloss to $700^{\circ}C$ earthenware, Devcon 5 minute, EPO-TEK 301-2, and Quik Wood showed the most similar gloss to celadon and whiteware, Quik Wood, EPO-TEK 301-2, and Devcon 5 minute showed the most similar gloss to buncheongware. It is necessary for conservator to decide the range of the restoration surface by predicting the increase and decrease of the restoration surface because most of the epoxy resins caused the volume change in curing process.

Strength Characteristics of Sedimentary Rock in Daegu-Gyungbuk Area Followed by Saturation and Crack Initiation (대구경북지역 퇴적암의 포화 및 균열 유발에 따른 강도 특성)

  • Park, Sung-Sik;Kim, Seong-Heon;Bae, Do-Han
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.29-42
    • /
    • 2018
  • Shale and mudstone in Daegu-Gyungbuk area have low strength and resistance to weathering compared to other rocks. Therefore, it is necessary to evaluate their strength depending on the degree of saturation and crack development. In this study, shales and mudstones were collected from several construction sites in Daegu-Gyungbuk area. Their basic material properties such as porosity, SEM, chemical component, and durability were tested. A porosity (absorptivity) of mudstone was 31% (25%), which was 6 (8) times higher than that of shale. Some mudstone was easily disintegrated with water and it consisted of highly-active clay mineral such as smectite type. These rocks were prepared by small cube specimens for unconfined compression test. An unconfined compressive strength of dry rock was compared with saturated one. Microwave oven was operated step by step to stimulate void water within a saturated rock, which resulted into high temperature and micro crack initiation within rocks. A strength of microwaved rocks was compared with operation time and crack initiation. As a result, the average unconfined compressive strength of dry and saturated shale was 62 and 33 MPa, respectively. The strength of mudstone for each condition was 11 and 4 MPa. When a rock became saturated, its strength decreased by 47% and 64% for shale and mudstone at average. In addition to saturation, a rock was in the microwave for 15 secs, its strength decreased into 49% for shale and 52% for mudstone. When a microwave oven operated up to 20 sec, a rock was crushed into several pieces and its temperature was approximately 200 degrees.

Effect of microstructure of surface glaze on printability of ink-jet printing ceramic tile (표면 유약 미세구조가 잉크젯 프린팅 도자타일의 인쇄적성에 미치는 효과)

  • Lee, Ji-Hyeon;Hwang, Kwang-Taek;Han, Kyu-Sung;Kim, Jin-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.6
    • /
    • pp.243-249
    • /
    • 2018
  • Ceramic tiles, which were manufactured through high-temperature firing process at over $1000^{\circ}C$, are widely used as interior and exterior materials for building construction due to their excellent durability and aesthetic of surface glaze. In recent years, the introduction of digital ink-jet printing in ceramic tiles for architectural use has been rapidly proceeding, and studies on the materials such as ceramic ink, ceramic pigment, glaze have been actively conducted. In this study, the effect of microstructure change of surface glaze on the printing properties of ceramic inks was investigated by micronization of kaolin, which is the raw material of surface glaze. Black ceramic ink was used for ink-jet printing on the surface glaze of ceramic tile to evaluate the printability by measuring the size and roundness of the printed ink dot. The relationship between microstructure change of surface glaze and printability of ceramic ink was also investigated by analyzing the surface roughness and internal micropore distribution of surface glaze.

Evaluation for Long Term Drying Shrinkage and Resistance to Freezing and Thawing of Hybrid Fiber Reinforced Concrete (하이브리드 섬유보강 콘크리트의 장기 건조수축 및 내동해성 평가)

  • Kim, Yo-Seb;Bae, Su-Ho;Lee, Hyun-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.60-66
    • /
    • 2019
  • Many researches have been performed on hybrid fiber reinforced concrete for years, which is to improve some of the weak material properties of concrete. Researches on characteristics of hybrid fiber reinforced concrete using amorphous steel fiber and organic fiber, however, yet remain to be done. Therefore, the purpose of this research is to estimate the compressive strength, long term drying shrinkage, and resistance to freezing and thawing of hybrid fiber reinforced concrete(HFRC) using amorphous steel fiber and polyamide fiber as one of organic fibers. For this purpose, HFRCs containing amorphous steel fiber and polyamide fiber were made according to their total volume fraction of 1.0% for target compressive strength of 40 and 60 MPa, respectively, and then the compressive strength, length change, and resistance to freezing and thawing of these were evaluated. As a result, the long term length change ratio of HFRC used in this study decreased by more than 30%, 25% than plain concrete at 365 and 730 days, respectively, and the durability factor of HFRC was very excellent as more than 90%.

Recycling of Coal Ash and Related Environmental Issues in Australia (호주의 석탄재 재활용 사례와 석탄재 재활용과 관련된 환경 문제)

  • Park, Jin Hee;Ji, Sang-Woo;Shin, Hee-Young;Jo, Hwanju;Ahn, Ji-Whan
    • Resources Recycling
    • /
    • v.28 no.4
    • /
    • pp.15-22
    • /
    • 2019
  • Coal combustion products are generated during coal combustion and can be grouped into fly ash and bottom ash depending on collection methods. Fly ash and bottom ash can be recycled for various purposes based on their characteristics. Australia is the fourth largest coal production country in the world and reuses coal ash as cement, concrete, mine filler, and agricultural soil amendment. When fly ash is used as a supplement for cement and concrete, strength of the cement and the durability of the concrete can be improved. Use of coal combustion product for mine backfill stabilizes underground mine voids and stores a large amount of coal ash in the voids. Because of alkalinity of coal combustion products, it can neutralize acid mine drainage when used for mine backfill. In addition, it can be used as an agricultural soil amendment to improve acidity and physical properties of the soil and to supply plant nutrients. Recycling of fly ash in Australia will be further expanded because of its low trace element contents that can be toxic to plants and low radioactive element contents existing within soil background concentrations. The characteristics of coal combustion products are related to the characteristics of the coal used for combustion, and since Korea imports coal from Australia, Korean coal combustion products also can be recycled for various purposes.

Mechanical and Optical Characteristics of Transparent Stretchable Hybrid Substrate using PDMS and Ecoflex Material (PDMS-Ecoflex 하이브리드 소재를 이용한 투명 신축성 기판의 기계적 및 광학적 특성)

  • Lee, Won Jae;Park, So-Yeon;Nam, Hyun Jin;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.129-135
    • /
    • 2018
  • In the stretchable electronic devices, the stretchable substrate is a very essential material which determines the stretchability, performances and durability of the stretchable electronic devices. In particular, the current stretchable materials have hysteresis making difficult to used as sensors and other electronic devices. In this study, we developed a PDMS-Ecoflex hybrid stretchable substrate mixed with PDMS and Ecoflex material in order to increase stretchability and improve hysteresis characteristics. Mechanical behavior of the hybrid substrate was evaluated using a tensile test, and optical transmittance of the hybrid substrate was also measured. As the content of Ecoflex increases, the PDMS-Ecoflex hybrid substrate becomes more flexible, and the elastic modulus decreases. In addition, the PDMS substrate failed a tensile strain of 270%, while the PDMS-Ecoflex hybrid substrate did not fail even at 500% strain indicating excellent stretchability. In the repeated tensile test, the hybrid substrate with 2:1 mixing ratio of PDMS and Ecoflex showed hysteresis. On the other hand, in the case of the hybrid substrate with the mixing ratio of 1:1, hysteresis did not occur at a strain of 50% and 100%. Hence, we developed a stretchable substrate with over 150% stretchability and no hysteresis characteristics. The optical transmittance of the Ecoflex substrate was 68.6%, whereas the transmittances of the hybrid substrate with mixing ratio of 2:1 and 1:1 were 78.6% and 75.4%, respectively. These results indicate that the PDMS-Ecoflex hybrid substrate is a potential candidate for a transparent stretchable substrate.