• Title/Summary/Keyword: durability characteristics

Search Result 1,209, Processing Time 0.025 seconds

Durability Analysis Technique of Automotive Suspension System Considering Dynamic Characteristics (동적 특성을 고려한 차량 현가 시스템의 내구해석 기법)

  • 한우섭;이혁재;임홍재;이상범
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.336-341
    • /
    • 2003
  • In this paper, resonance durability analysis technique is presented for the fatigue life assessment considering dynamic effect of a vehicle system. In the resonance durability analysis, the frequency response and the dynamic load on frequency domain are used. Multi-body dynamic analysis, finite element analysis, and fatigue life prediction method are applied for the virtual durability assessment. To obtain the frequency response and the dynamic load, the computer simulations running over typical pothole and Belgian road are carried out by utilizing vehicle dynamic model. The durability estimations on the rear suspension system of the passenger car are performed by using the presented technique and compared with the quasi-static durability analysis. The study shows that the fatigue life considering resonant frequency of vehicle system can be effectively estimated in early design stage.

  • PDF

Strength and durability characteristics of biopolymer-treated desert sand

  • Qureshi, Mohsin U.;Chang, Ilhan;Al-Sadarani, Khaloud
    • Geomechanics and Engineering
    • /
    • v.12 no.5
    • /
    • pp.785-801
    • /
    • 2017
  • Biopolymer treatment of geomaterials to develop sustainable geotechnical systems is an important step towards the reduction of global warming. The cutting edge technology of biopolymer treatment is not only environment friendly but also has widespread application. This paper presents the strength and slake durability characteristics of biopolymer-treated sand sampled from Al-Sharqia Desert in Oman. The specimens were prepared by mixing sand at various proportions by weight of xanthan gum biopolymer. To make a comparison with conventional methods of ground improvement, cement treated sand specimens were also prepared. To demonstrate the effects of wetting and drying, standard slake durability tests were also conducted on the specimens. According to the results of strength tests, xanthan gum treatment increased the unconfined strength of sand, similar to the strengthening effect of mixing cement in sand. The slake durability test results indicated that the resistance of biopolymer-treated sand to disintegration upon interaction with water is stronger than that of cement treated sand. The percentage of xanthan gum to treat sand is proposed as 2-3% for optimal performance in terms of strength and durability. SEM analysis of biopolymer-treated sand specimens also confirms that the sand particles are linked through the biopolymer, which has increased shear resistance and durability. Results of this study imply xanthan gum biopolymer treatment as an eco-friendly technique to improve the mechanical properties of desert sand. However, the strengthening effect due to the biopolymer treatment of sand can be weakened upon interaction with water.

Experimental Lnvestigation on Mechanical Characteristics and Environmental Effects on Rubber Concrete

  • Khorrami, Morteza;Vafai, Abolhassan;Khalilitabas, Ahmad A.;Desai, Chandrakant S.;Ardakani, M. H. Majedi
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.1
    • /
    • pp.17-23
    • /
    • 2010
  • The feasibility of the use of scrap tire rubber in concrete was investigated. The tests conducted in two groups: replacing of coarse aggregates with crumb rubber and cement particles with rubber powder. To distinguish the properties of new concrete, the following mechanical and durability tests were designed: compressive, tensile and flexural strength, permeability and water absorption. Rubber addition could affect the concrete properties depend on the type and percentage of the rubber added. Although the rubber addition modifies the mechanical characteristics of concrete in a way, but higher rubber content could not be useful. Concrete durability showed more dependency to the type of rubber instead of percentage of rubber. Moreover, to optimize the mechanical and durability of rubberized concrete, the useful percentage of rubber has been recommended.

An Experimental Study about Characteristics of Penetrating Surface Protection Materials to Promote Concrete Structure Durability (콘크리트 구조체 내구성 향상을 위한 침투성 표면 보호재의 특성에 관한 실험적 연구)

  • Lee Jeoung-Yun;Cho Byoung-Young;Kim Young-Keun;Oh Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.93-96
    • /
    • 2005
  • Concrete has been considered as a semi-permanent structural material, because its excellent durability. Recently, durability decline of concrete construction by environmental pollution is becoming social problem. The durability of high durable structure is declined by carbonate, chloride permeation and deterioration of waterproof performance, etc. This study of penetrating surface protection materials evaluated about carbonation, chloride permeation, waterproof performance, and durability of abrasion, etc. It is profitable in durability that spread penetrating surface protection materials

  • PDF

Durability Characteristics of Controlled Low Strength Material(Flowable Fill) with High Volume Fly Ash Content (다량의 플라이 애쉬를 사용한 저강도 고유동 충전재의 내구특성에 관한 연구)

  • 원종필;신유길
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.1
    • /
    • pp.113-125
    • /
    • 2000
  • The purpose of this study was to examine the durability characteristics of controlled low strength material(flowable fill) with high volume fly ash content. Flowable fill refer to self-compacted, cementitious material used primarily as a backfill in lieu of compacted fill. The two primary advantages of flowable fill over traditional methods are its ease of placement and the elimination of settlement. Therefore, in difficult compaction areas or areas where settlement is a concern, flowable fill should be considered. The fly ash used in this study met the requirements of KS L 5405 and ASTM C 618 for Class F material. The mix proportions used for flowable fill are selected to obtain low-strength materials in the 10 to 15kgf/$\textrm{cm}^2$ range. The optimized flowable fill was consisted of 60kg f/$\textrm{m}^3$ cement content, 280kgf/$\textrm{m}^3$ fly ash content, 1400kgf/$\textrm{m}^3$ sand content, and 320kgf/$\textrm{m}^3$ water content. Subsequently, durability tests including permeability, warm water immersion, repeated wetting & drying, freezing & thawing for high volume fly ash-flowable fill are conducted. The results indicated that flowable fill has acceptable durability characteristics.

Accelerated Test Program for Durability Characteristics of GFRP Rebars (내구특성 파악을 위한 GFRP 보강근의 촉진실험 연구)

  • Kim, Hyeong-Yeol;You, Young-Jun;Park, Young-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.157-164
    • /
    • 2006
  • This paper presents the durability characteristics of commercially available CFRP rebars under various environmental conditions. Two types of GFRP rebars were tested by using an accelerated aging method. A total of 264 rebar specimens were conditioned up to 132 days in the moisture, chloride. alkaline, and freeze-thaw environmental conditions. The durability characteristics of conditioned rebars were obtained by comparing the tensile strength, horizontal shear strength, and elastic modulus between the unconditioned and conditioned GFRP rebars. The test results indicated that the mechanical properties of GFRP were significantly reduced after conditioning. Long-term degradation of GFRP rebars was also estimated using the results of a short-term durability test.

Durability Characteristics of Controlled Low-Strength Materials using Bottom Ash (Bottom ash를 함유한 저강도 고유동 재료의 내구성능)

  • 원종필;이용수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1203-1206
    • /
    • 2001
  • The main intent of this research is to determine the feasibility of utilizing bottom ash as CLSM(Controlled Low-strength Materials). The durability tests including permeability, repeated wetting and drying, freezing and thawing for bottom ash CLSM were conducted. Laboratory test results indicated that CLSM using bottom ash has acceptable durability performance.

  • PDF

Shrinkage and Durability Characteristics of Latex Modified Repair Mortar for Agricultural Concrete Structures (농업용 콘크리트 구조물용 라텍스개질 보수용 모르타르의 수축 및 내구성능 평가)

  • Won, Jong-Pil;Lee, Jae-Young;Park, Chan-Gi;Park, Seong-Gi;Kim, Wan-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.5
    • /
    • pp.23-30
    • /
    • 2007
  • This research was to evaluate the shrinkage and durability performance of latex modified repair mortar and to improve the service lift of the agricultural concrete structures. The shrinkage characteristics of the repair material creates the delamination of repair materials and existing concrete. It may reduce the service life of structures. Also the reduction of durability performance of the repair materials induces the destruction of the repaired concrete structures at early stage. In this research, plastic and drying shrinkage, thermal expansion coefficient for shrinkage properties, durability performance, permeability, repeated freezing and thawing, and resistance of chemical solution test were performed. Test results showed that the latex modified repair mortar indicated the shrinkage amount which the delamination does not happen, and the latex modified repair mortar appeared excellent long-term durability performance which can increase the service life.

Injection Molded Microcellular Plastic Gear (II) - Characteristics of the Counter Pressurized Microcellular Plastic Gear - (초미세발포 플라스틱 기어에 관한 연구 (II) - 카운터프레셔 초미세발포 플라스틱 기어의 특성 -)

  • Ha Young Wook;Takahashi Hideo;Chong Tae Hyong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.655-662
    • /
    • 2005
  • This paper investigates the improvement of accuracy and fatigue life of the developed counter pressurized microcellular gears of polyacetal. It is shown that the fatigue life and operational characteristics of the counter pressurized microcellular gears are more improved than conventional injection molded plastic gears by the dynamic gear durability test. For the cases of test sea.5. conventional injection molded sea.5(SGea.) and counter pressurized microcellular gears(CGear) are manufactured. Durability test is performed on both conventional lnjection molded gears and counter pressurized microcellular gears. Accuracy variation and operational characteristics on fatigue life, wear and tooth surface temperature of CGear and Scear are compared and represented. Operational characteristics of the proposed counter pressurized microcellular gears show a good result in this research. The durability limit of counter pressurized microcellular gears is also obtained, and represented by a function of unit load as well as by a function off-factor.

Slaking Characteristics of shale in the Gyoungsang Super-group, Korea (경상누층군 셰일의 내구성 특성)

  • Park, Sung-Sik;Ye, Sung-Ryol;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.315-324
    • /
    • 2016
  • Because of a fissility characteristics of shale in the Gyoungsang super-group, it breaks down to debris when daylighted by construction work and causes a slope unstability. To assess the durability property of shale, a series of slake durability tests was conducted by controlling test conditions such as shape of specimen, number of specimen, revolution speed, revolution number, drying temperature and pH of submerging liquid. For the specimen shape, cube one showed relatively lower durability index than cuboid and/or fan shape one. The test with the more number of specimens showed the less durability index because of a higher friction among specimens in the drum. The durability index is linearly decreased by increasing the total number of revolution, while the revolution velocity could not affect the index. And the durability index is also decreased by increasing the drying temperature of specimen and by decreasing the pH of submerging liquid. Because the durability index of shale is almost similar to that of crystalline rocks, the disintegration characteristics of shale could not be assessed by the slake durability test recommended by ISRM, and thus a new test method by changing the total revolution number may be required for the shale having fissility characteristics.