• Title/Summary/Keyword: ductility-based earthquake resistant design

Search Result 17, Processing Time 0.018 seconds

Basic Design for Earthquake Resistance of Typical Bridges (일반교량의 내진성능 확보를 위한 기본설계)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.1
    • /
    • pp.49-57
    • /
    • 2013
  • Structural elements of typical bridges are superstructure, connections, substuctures and foundations and earthquake resistance is decided with the failure mechanism formed by substuctures and connections. Therefore earthquake resistant design should be carried out in the basic design step where design strengths, e.g. design sections for structural elements are determined. The Earthquake Resistant Design Part of Korean Roadway Bridge Design Code provides two basic design procedures. The first conventional procedure applies the Code-provided response modification factors. The second new procedure is the ductility-based earthquake resistant design, where designer can determine the response modification factors. In this study, basic designs including the two design processes are carried out for a typical bridge and supplements are identified in view of providing earthquake resistance.

No Collapse Design for Typical Bridges (일반교량의 붕괴방지설계)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.3
    • /
    • pp.163-172
    • /
    • 2014
  • The purpose of earthquake resistant design for typical bridges is the No Collapse Design and the Earthquake Resistant Design Part of Roadway Bridge Design Code provides a design process to construct the Ductile Failure Mechanism for the bridge structure. However, if it is not practical to provide the Ductile Failure Mechanism due to structure types or site conditions, the Brittle Failure Mechanism is an alternative way to get the No Collapse Design. As well as the existing design process constructing the Ductile Failure Mechanism, the Earthquake Resistant Design Part provides a ductility-based design process as an appendix, which is prepared for bridges with reinforced concrete piers. According to the new design process, designer determines a required response modification factor for substructure and transverse reinforcement for confinement therefrom. In this study, a typical bridge with steel bearing connections and reinforced concrete piers is selected for which the existing as well as the ductility-based design processes are applied and different results from the two design processes are identified. Based on the results, an earthquake resistant design procedure is proposed in which designers should consider the two design processes.

Fatigue Damage Assessment for Steel Structures Subjected to Earthquake (지진에 대한 강구조물의 피로손상도 추정법)

  • Song, Jong Keol;Yun, Chung Bang;Lee, Dong Guen
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.1 s.30
    • /
    • pp.95-105
    • /
    • 1997
  • Structures subjected to strong seismic excitation may undergo inelastic deformation cycles. The resulting cumulative fatigue damage process reduces the ability of structures and components to withstand seismic loads. Yet, the present earthquake resistance design methods focus mainly on the maximum displacement ductility, ignoring the effect of the cyclic responses. The damage parameters closely related to the cumulative damage need to be properly reflected on the aseismic design methods. In this study, two cumulative damage assessment methods derived from the plastic fatigue theory are investigated. The one is based on the hysteretic ductility amplitude, and the other is based on the dissipated hysteretic energy. Both methods can consider the maximum ductility and the cyclic behavior of structural response. The validity of two damage methods has been examined for single degree of freedom structures with various natural frequencies against two different earthquake excitations.

  • PDF

Improved earthquake resistant design of torsionally stiff asymmetric steel buildings

  • Kyrkos, M.T.;Anagnostopoulos, S.A.
    • Earthquakes and Structures
    • /
    • v.2 no.2
    • /
    • pp.127-147
    • /
    • 2011
  • In a companion paper as well as in earlier publications, it has been shown that in asymmetric frame buildings, designed in accordance with modern codes and subjected to strong earthquake excitations, the ductility demands at the so called "flexible" edges are consistently and substantially higher than the ductility demands at the "stiff" edges of the building. In some cases the differences in the computed ductility factors between elements at the two opposite building edges exceeded 100%. Similar findings have also been reported for code designed reinforced concrete buildings. This is an undesirable behavior as it indicates no good use of material and the possibility for overload of the "flexible" edge members with a consequent potential for premature failure. In the present paper, a design modification will be introduced that can alleviate the problem and lead to a more uniform distribution of ductility demands in the elements of all building edges. The presented results are based on the steel frames detailed in the companion paper. This investigation is another step towards more rational design of non-symmetric steel buildings.

An assessment of code designed, torsionally stiff, asymmetric steel buildings under strong earthquake excitations

  • Kyrkos, M.T.;Anagnostopoulos, S.A.
    • Earthquakes and Structures
    • /
    • v.2 no.2
    • /
    • pp.109-126
    • /
    • 2011
  • The inelastic earthquake response of non-symmetric, braced steel buildings, designed according to the EC3 (steel structures) and EC8 (earthquake resistant design) codes, is investigated using 1, 3 and 5-story models, subjected to a set of 10, two-component, semi-artificial motions, generated to match the design spectrum. It is found that in these buildings, the so-called "flexible" edge frames exhibit higher ductility demands and interstory drifts than the "stiff" edge frames. We note that the same results were reported in an earlier study for reinforced concrete buildings and are the opposite of what was predicted in several other studies based on the over simplified, hence very popular, one-story, shear-beam type models. The substantial differences in such demands between the two sides suggest a need for reassessment of the pertinent code provisions. In a follow up paper, a design modification will be introduced that can lead to a more uniform distribution of ductility demands in the elements of all building edges. This investigation is another step towards more rational design of non-symmetric steel buildings.

Pier Stiffness and Bridge Collapse Mechanism (교각 강성과 교량의 붕괴기구)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.187-192
    • /
    • 2016
  • While structures are designed within elastic range by other designs, plastic behavior of structures should be verified and controlled in order to prevent structural collapse by the earthquake resistant design. No Collapse Requirement for typical bridges is to avoid falling down of superstructure by way of plastic behavior of certain structural elements and to operate emergency vehicles after earthquake. Such plastic behavior is restricted to connections or pier columns and appropriate measures are required for each case. Earthquake Resistant Design part of Roadway Bridge Design Code provides design processes for Ductile Collapse Mechanism by forming plastic hinges at pier columns. Also for bridges with reinforced concrete piers ductility-based design processes are provided as an appendix constructing Brittle Collapse Mechanism with connection yielding. In this study, a typical bridge with steel bearing connections and reinforced concrete piers is selected and No Collapse Design procedure considering both Ductile and Brittle Collapse Mechanism is proposed together with revisions required for the Earthquake Resistant Design part.

Displacement Ductility Based Seismic Performance Evaluation of Circular RC Bridge Piers (변위연성도 기반 원형철근콘크리트 교각의 내진성능 평가)

  • Park, Chang-Kyu;Lee, Dae-Hyoung;Yun, Sang-Chul;Chung, Young-Soo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.276-283
    • /
    • 2006
  • Korea is considered to be immune from the earthquake hazard because it is located far away from the active fault. However, recent earthquake caused a loss of lives and economical loss worldwide. Hence there has been raised an importance of the earthquake resistant design for various infrastructures. In this research, the seismic design and evaluation criterion for RC bridge pier were proposed from the experimental results of 82 circular RC bridge piers tested in domestic and aboard. New seismic criterion was introduced the limited ductile design provision suitable to Korean peninsula, which would be classified as a low or moderate seismic region. In addition, further important topic for the seismic safety of RC bridge piers in Korea is the seismic performance enhancement of RC bridge piers, which were designed and constructed before the 1992 seismic design provision. Therefore, the proposed seismic performance evaluation criterion could be very useful to judge seismic retrofit need or not according to the residual seismic performance of the RC bridge piers. Also, it could reduce an uncertainty for the safety of the infrastructure under earthquakes.

  • PDF

Development of analytical modeling for an energy-dissipating cladding panel

  • Maneetes, H.;Memari, A.M.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.5
    • /
    • pp.587-608
    • /
    • 2009
  • Modern earthquake-resistant design aims to isolate architectural precast concrete panels from the structural system so as to reduce the interaction with the supporting structure and hence minimize damage. The present study seeks to maximize the cladding-structure interaction by developing an energy-dissipating cladding system (EDCS) that is capable of functioning both as a structural brace, as well as a source of energy dissipation. The EDCS is designed to provide added stiffness and damping to buildings with steel moment resisting frames with the goal of favorably modifying the building response to earthquake-induced forces without demanding any inelastic action and ductility from the basic lateral force resisting system. Because many modern building facades typically have continuous and large openings on top of the precast cladding panels at each floor level for window system, the present study focuses on spandrel type precast concrete cladding panel. The preliminary design of the EDCS was based on existing guidelines and research data on architectural precast concrete cladding and supplemental energy dissipation devices. For the component-level study, the preliminary design was validated and further refined based on the results of nonlinear finite element analyses. The stiffness and strength characteristics of the EDCS were established from a series of nonlinear finite element analyses and are discussed in detail in this paper.

Evaluation of Ductility and Strength Factors for Special Steel Moment Resisting Frames (철골 연성 모멘트 골조의 연성계수 및 강도계수 평가)

  • Kang, Cheol Kyu;Choi, Byong Jeong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.6 s.73
    • /
    • pp.793-805
    • /
    • 2004
  • The main objective of this paper is to evaluate the ductility and strength factors that are key components of the response modification factor for special steel moment-resistant frames. The ductility factors for special steel moment-resistant frames were calculated by multiplying the ductility factor for SDOF systems and the MDOF modification factors. Ductility factors were computed for elastic and perfectly plastic SDOF systems undergoing different levels of inelastic deformation and periods when subjected to a large number of recorded earthquake ground motions. Based on the results of the regression analysis, simplified expressions were proposed to compute the ductility factors. Based on previous studies, the MDOF modification factors were also proposed to account for the MDOF systems. Strength factors for special steel moment resisting frames were estimated from the results of the nonlinear static analysis. A total of 36 sample steel frames were designed to investigate the ductility and strength factors considering design parameters such as number of stories (4, 8, and 16 stories), seismic zone factors (Z = 0.075, 0.2, and 0.4), framing system (Perimeter Frames, PF and Distributed Frames, DF), and failure mechanism (Strong-Column Weak Beam, SCWB, and Weak-Column Strong-Beam, WCSB). The effects of these design parameters on the ductility and strength factors for special steel moment-resisting frames were investigated.

Seismic design and assessment of steel-concrete frame structures with welded dissipative fuses

  • Calado, Luis;Proenca, Jorge M.;Sio, Joao
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.527-544
    • /
    • 2020
  • This research presents the design and numerical assessment of composite steel-concrete frame structures with welded dissipative fuses. The assessment has been carried out based on linear response spectrum, nonlinear static pushover and time history procedures. The analytical expressions which define the envelope of the nonlinear response of the dissipative fuses are first presented and calibrated against experimental results available in literature. The assessment is then carried out according to a design methodology proposed herein. Outcomes of the numerical assessment indicate that the use of welded dissipative fuses successfully limited damage within the replaceable parts. Furthermore, although structures with dissipative fuses present lower strength and, generally, lower displacement capacity, their displacement ductility and global dissipative performance are generally higher than conventional structures, especially when the structure with dissipative fuses presents a dissipative configuration adjusted to the bending moment distribution diagram calculated for the applied seismic action.