• 제목/요약/키워드: ductility of columns

검색결과 593건 처리시간 0.023초

철근콘크리트 원형교각의 연성도 상관관계에 관한 연구 (Relationship between Curvature Ductility and Displacement Ductility of RC Bridge Circular Columns)

  • 손혁수;조재원;이재훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.111-116
    • /
    • 2002
  • The flexural ductility capacity of reinforced concrete columns can be expressed either in terms of curvature ductility or displacement ductility. To evaluate ductility capacity of reinforced concrete columns, analytical models and a non-linear analysis program, NARCC have been developed, which is applicable to the RC columns subjected to seismic loading. The analytical results by using computer program NARCC are in good agreement with the test results. In order to develop relationships between the curvature ductility and the displacement ductility, the analysis for total 21,600 RC circular columns using the computer program NARCC have been carried out for parametric studies. Based on the results from the parametric studies, a correlation equation between the curvature ductility and the displacement ductility was developed.

  • PDF

철근콘크리트 교각의 연성요구량에 따른 심부구속철근량 (Confinement Steel based on Ductility Demand for RC Bridge Columns)

  • 손혁수;한상엽;조재원;이재훈
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.322-329
    • /
    • 2002
  • The purpose of this study is to develop a reasonable design for transverse confinement reinforcement considering ductility and required transverse confinement reinforcement of RC bridge columns. In order to develop relationships between the curvature ductility and the displacement ductility, the analysis for total 21,600 columns using the computer program NARCC have been carried out for parametric studies. Based on the results from the parametric studies, a correlation equation between the curvature ductility and the displacement ductility was developed. In addition, an equation for calculating the required transverse confinement reinforcement based on ductility demand was developed for seismic design of RC bridge columns. The equations proposed by this study will provide more reasonable and more effective design guidelines for performance-based seismic design of RC bridge columns.

  • PDF

Seismic interaction of flexural ductility and shear capacity in reinforced concrete columns

  • Howser, Rachel;Laskar, A.;Mo, Y.L.
    • Structural Engineering and Mechanics
    • /
    • 제35권5호
    • /
    • pp.593-616
    • /
    • 2010
  • The seismic performance of reinforced concrete (RC) bridge columns is a significant issue because the interaction of flexural ductility and shear capacity of such columns with varied amounts of lateral reinforcement is not well established. Several relationships between flexural ductility and shear capacity have been proposed by various researchers in the past. In this paper, a parametric study on RC bridge columns is conducted using a nonlinear finite element program, "Simulation of Concrete Structures (SCS)", developed at the University of Houston. SCS has been previously used to predict the seismic behavior of such columns. The predicted results were compared with the test results obtained from experiments available in literature. Based on the results of the parametric study performed in this paper, a set of new relationships between flexural ductility and shear capacity of RC columns is proposed for seismic design.

Inelastic design of high-axially loaded concrete columns in moderate seismicity regions

  • Ho, Johnny Ching Ming
    • Structural Engineering and Mechanics
    • /
    • 제39권4호
    • /
    • pp.559-578
    • /
    • 2011
  • In regions of high seismic risk, high-strength concrete (HSC) columns of tall buildings are designed to be fully ductile during earthquake attack by providing substantial amount of confining steel within the critical region. However. in areas of low to moderate seismic risk, the same provision of confining steel is too conservative because of the reduced seismic demand. More critically, it causes problematic steel congestion in the beam-column joints and column critical region. This will eventually affect the quality of concrete placing owing to blockage. To relieve the problem, the confining steel in the critical region of HSC columns located in low to moderate seismicity regions can be suitably reduced, while maintaining a limited ductility level. Despite the advantage, there are still no guidelines developed for designing limited ductility HSC columns. In this paper, a formula for designing limited ductility HSC columns is presented. The validity of the formula was verified by testing half-scale HSC columns subjected to combined high-axial load and flexure, in which the confining steel was provided as per the proposed formula. From the test results, it is evident that the curvature ductility factors obtained for all these columns were about 10, which is the generally accepted level of limited ductility.

고강도 콘크리트 기둥의 거동에 미치는 콘크리트 강도와 띠철근의 영향 (Influence of Concrete Strength and Lateral Ties on Behavior of High-Strength Concrete Columns)

  • 이영호;정헌수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권2호
    • /
    • pp.245-253
    • /
    • 2002
  • This study was focused on the effect of concrete strength and lateral ties of concrete columns using high-strength concrete. Thirty-six concrete columns with 20cm square cross-section were tested. Experimental parameters included the concrete strength, the distribution of longitudinal bars and the volumetric ratio, yield strength, spacing of lateral ties. From the experiments, we found that: 1) the increasing rate of the strength and ductility of concrete columns caused by confinement of lateral ties was decreasing, as the concrete strength increased. 2) The high volumetric ratio and the reduction of tie spacing had a tendency to enhance the strength and improve the ductility. 3) The high-strength concrete columns required high volumetric ratio of lateral ties to maintain the proper strength and ductility. It was observed that the current AIK design code to specify the maximum tie spacing of high-strength concrete columns led to the poor strength and ductility for seismic design.

Experimental study on reinforced concrete filled circular steel tubular columns

  • Hua, Wei;Wang, Hai-Jun;Hasegawa, Akira
    • Steel and Composite Structures
    • /
    • 제17권4호
    • /
    • pp.517-533
    • /
    • 2014
  • Experimental results of 39 specimens including concrete columns, RC columns, hollow steel tube columns, concrete filled steel tubular (CFT) columns, and reinforced concrete filled steel tubular (RCFT) columns are presented. Based on the experimental results, the load-carrying capacity, confined effect, ductility, and failure mode of test columns are investigated. The effects of the main factors such as width-thickness ratio (the ratio of external diameter and wall thickness for steel tubes), concrete strength, steel tube with or without rib, and arrangement of reinforcing bars on the mechanical characteristics of columns are discussed as well. The differences between CFT and RCFT are compared. As a result, it is thought that strength, rigidity and ductility of RCFT are improved; especially strength and ductility are improved after the peak of load-displacement curve.

고축력과 반복횡력을 받는 고강도 R/C기둥의 횡보강근 효과 (An Effects of Lateral Reinforcement of High-Strength R/C Columns Subjected to Reversed Cyclic and High-Axail Force)

  • 신성우;안종문
    • 콘크리트학회논문집
    • /
    • 제11권5호
    • /
    • pp.3-10
    • /
    • 1999
  • Earthquake resistant R/C frame structures are generally designed to prevent the columns from plastic hinging. R/C columns under higher axial load or strong earthquake showed a brittle behavior due to the deterioration of strength and stiffness degradation. An experimental study was conducted to examine the behavior and to find the relationship between amounts of lateral reinforcements and compressive strength of ten R/C column specimens subjected to reversed cyclic lateral load and higher axial load. Test results are follows : An increase in the amount of lateral reinforcement results in a significant improvement in both ductility and energy dissipation capacities of columns. R/C columns with sub-tie provide the improved ductility capacity than those with closely spaced lateral reinforcement only. While the load resisting capacity of the high strength R/C columns is higher than the normal strength concrete columns under both an identical ratio of lateral reinforcement, however the ductility capacity of high strength R/C columns is decreased considerably. Therefore, the amounts of lateral reinforcement must be designed carefully to secure the sufficient ductility and economic design of HSC columns under higher axial load.

New Seismic Design Concept for RC Bridge Columns

  • Lee, Jae-Hoon;Son, Hyeok-Soo
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.204-209
    • /
    • 2003
  • The purpose of this study is to develop new seismic design concept based on ductility demand for reinforced concrete bridge columns in areas of low to moderate seismicity. In developing the ductility based design approach, relationship between ductility demand and transverse reinforcement demand should be quantitatively developed. To evaluate ductility capacity of reinforced concrete columns, analytical models and a non-linear analysis program, NARCC have been developed. Based on analytical and experimental results, an equation for relationship between curvature ductility and displacement ductility, an equation for designing the transverse confinement reinforcement for ductility demand, and a new seismic design concept of RC bridge columns are presented.

  • PDF

Seismic performance of lightweight aggregate concrete columns subjected to different axial loads

  • Yeon-Back Jung;Ju-Hyun Mun;Keun-Hyeok Yang;Chae-Rim Im
    • Structural Engineering and Mechanics
    • /
    • 제88권2호
    • /
    • pp.169-178
    • /
    • 2023
  • Lightweight aggregate concrete (LWAC) has various advantages, but it has limitations in ensuring sufficient ductility as structural members such as reinforced concrete (RC) columns due to its low confinement effect of core concrete. In particular, the confinement effect significantly decreases as the axial load increases, but studies on evaluating the ductility of RC columns at high axial loads are very limited. Therefore, this study examined the effects of concrete unit weight on the seismic performance of RC columns subjected to constant axial loads applied with different values for each specimen. The column specimens were classified into all-lightweight aggregate concrete (ALWAC), sand-lightweight aggregate concrete (SLWAC), and normal-weight concrete (NWC). The amount of transverse reinforcement was specified for all the columns to satisfy twice the minimum amount specified in the ACI 318-19 provision. Test results showed that the normalized moment capacity of the columns decreased slightly with the concrete unit weight, whereas the moment capacity of LWAC columns could be conservatively estimated based on the procedure stipulated in ACI 318-19 using an equivalent rectangular stress block. Additionally, by applying the section lamina method, the axial load level corresponding to the balanced failure decreased with the concrete unit weight. The ductility of the columns also decreased with the concrete unit weight, indicating a higher level of decline under a higher axial load level. Thus, the LWAC columns required more transverse reinforcement than their counterpart NWC columns to achieve the same ductility level. Ultimately, in order to achieve high ductility in LWAC columns subjected to an axial load of 0.5, it is recommended to design the transverse reinforcement with twice the minimum amount specified in the ACI 318-19 provision.

고강도콘크리트 교각의 연성 (Ductility of High Strength Conceret Bridge Columns)

  • 이재훈;배성용;김광수;정철호
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.423-430
    • /
    • 2001
  • This research was conducted to investigate the seismic behavior and ductility of circular spiral reinforcement concrete bridge columns used in high strength concrete. The experimental variables consisted of transverse steel amount and spacing, different axial load levels. From the test results, sufficient displacement ductility(at least 5.5) was observed for the columus which was satisfied wi th the requirement confinement steel amount of the Korean Bridge Design Specification. In case of the columns with 50 MPa of concrete compressive strength, the columns wi th 80 % of the confinement steel amount requirement showed adequate displacement ductility(at least 6.5) under 0.2 of axial load level. And in case of the columns with 60.2 77a of concrete compressive strength, the columns with 44 \ulcorner of the confinement steel requirement provided adequate displacement ductilit under less than 0.1 of axial load level and the columns with 0.22 % provided showed comparatively high the ducti1iffy under 0.21 of axial load level.

  • PDF