• Title/Summary/Keyword: ductile failure

Search Result 383, Processing Time 0.023 seconds

Ductility of Column-Slab eoint in R/C Flat Plate System (플랫 플레이트 구조의 기둥.슬래브 접합부 연성에 관한 연구)

  • 김형기;박복만
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.113-119
    • /
    • 2000
  • The R/C flat plate system provides architectural flexibility, clear space, reduced building height, simple formwork, which consequently enhance constructibility. One of the serious problems in the flat plate system is brittle punching shear failure due to transfer of shear force and unbalanced moments in column-slab joint. Recently, the flat plate system accompanied with shear walls to resist the lateral loads is applied to high-rise buidings. Although the flat plate system is not considered in design as part of the lateral load-resisting system, it is required that this system keeps the ductile behavior for the lateral displacement of the building. However, it is unclear whether the column-slab joint possesses ductility enough to survive the lateral deformation. The objective of this paper is to investigate the major parameters that influence the ductility of R/C flat plate system by examining the existing experiments on column-slab joint. The effects of gravity load and shear reinforcement on the ductility of the flat plate system are presented.

An Application of Plasticity Model for Ice Deformation Characteristics (수변형 특성에 있어서 소성 모델의 응용)

  • Choe, Gyeong-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.15-21
    • /
    • 1990
  • This study focuses the mechanical deformation response predicted by the plasticity model for polycrystalline ice. To describe various deformation characteristics, ice is idealized as a perfectly plastic material using an asymptotic exponential failure criterion. This criterion is suite for describing materials which exhibit brittle deformation at low hydrostatic pressure and ductile deformation at high hydrostatic pressure. The results are compared to those of continuum damage mechanics model. Plasticity model shows good agreement with damage model and experimental results for high confining pressures even at high strain-rates which is usually considered as a brittle condition under uniaxial compression.

  • PDF

An Application of Plasticity Model for Ice Deformation Characteristics (수변형 특성에 있어서 소성 모델의 응용)

  • Choe, Gyeong-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.165-165
    • /
    • 1990
  • This study focuses the mechanical deformation response predicted by the plasticity model for polycrystalline ice. To describe various deformation characteristics, ice is idealized as a perfectly plastic material using an asymptotic exponential failure criterion. This criterion is suite for describing materials which exhibit brittle deformation at low hydrostatic pressure and ductile deformation at high hydrostatic pressure. The results are compared to those of continuum damage mechanics model. Plasticity model shows good agreement with damage model and experimental results for high confining pressures even at high strain-rates which is usually considered as a brittle condition under uniaxial compression.

Application of the compressive-force path concept in the design of reinforced concrete indeterminate structures: A pilot study

  • Seraj, Salek M.;Kotsovos, Michael D.;Pavlovic, Milija N.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.5
    • /
    • pp.475-495
    • /
    • 1995
  • In the past, physical models have been proposed, in compliance with the concept of the compressive-force path, for the realistic design of various statically determinate structural concrete members. The present work extends these models so as to encompass indeterminate RC structural forms. Pilot tests conducted on continuous beams and fixed-ended portal frames have revealed that designing such members to present-day concepts may lead to brittle types of failure. On the other hand, similar members designed on the basis of the proposed physical models attained very ductile failures. It appears that, unlike current design approaches, the compressive-force path concept is capable of identifying those areas where failure is most likely to be triggered, and ensures better load redistribution, thus improving ductility. The beneficial effect of proper detailing at the point of contraflexure in an indeterminate RC member is to be noted.

A Study on the Development of High Strength Railroad Block Using Wasted Tire Chips (Rubber Concrete를 사용한 고강도 철도침목의 실용화 연구)

  • 손종규;임유묵;정환욱;문장수;정상진;최문식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.44-50
    • /
    • 1996
  • Accumulation of worn-out automobile tires creat fire and health hazards. As a possible solution to the problem of scrap-tire disposal, an experimental study was conducted to examine the potential of using tire chips as aggregate in Railroad block. This paper examines strength and toughness properties of Railroad block in which different amounts of rubber-tire particles of several sizes were used as aggregate. The Railroad block mixtures exhibited lower compressive, bending than did normal block. However, these mixtures did not demonstrate brittle failure, but rather a ductile, plastic failure, and had the ability to absorb a large amount of plastic energy under compressive loads.

  • PDF

An Experimental Study on Effects Transverse Reinforcement in Lap-Spliced Tension Reinforcing Bars (인장철근의 겹침이음에서 횡보강근의 효과에 관한 실험적 연구)

  • 이호준;최선아;연규원;박찬수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.879-884
    • /
    • 2000
  • In this study, an experimental work is conducted to evaluate the bond performance between reinforcing bars and surrounding concrete in a lapped splice. The major variable of this test is a transverse reinforcement in lap-spliced tension reinforcing bars. The test results indicate that the bond strength per unit splice length increases with an increase in the transverse reinforcement factor $K_{\alpha}$. The specimens taken less than (c+$K_{tr}$)/$d_b$=3.0 tend to be very brittle at failure. But the specimens taken longer than (c+$K_{tr}$)/$d_b$=3.0 tend to be somewhat ductile at failure.

Shear Behavior of Reinforced Concrete Beams Strengthened with CFRP Strips (탄소섬유판(CFRP Strip)으로 보강된 철근콘크리트 부재의 전단거동)

  • Lim, Dong-Hwan;Park, Sung-Hwan;Kim, Yong-Il
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.161-164
    • /
    • 2006
  • Carbon fiber reinforced polymer(CFRP) strips have superior mechanical and chemical properties in comparison with conventional materials. The purpose of this study is to investigate the mechanical shear behavior of concrete structures strengthened by CFRP strips A total of 15 concrete members were made and tested. Shear span to depth ratio(a/d) and the spacing of CFRP stripswere selected as major test variables. From test results, it isshown that shear strengthening with CFRP strips can increase the first shear strength and ultimate shear strength of concrete members significantly. And the brittle shear failure mode can be changed to a ductile failure mode by CFRP strips.

  • PDF

Capacity Design of RC Bridge Columns for Seismic Loading

  • Lee Jae Hoon;Ko Seong Hyun;Choi Jin Ho;Shin Sung Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.591-594
    • /
    • 2004
  • Recently, a tendency for development of seismic approach of foreign countries is capacity design development. Capacity design is rational seismic design concept of capacity protection considering not only earthquake magnitude, but also behavior of structure. For that reason, the most bridge seismic design specifications contain capacity protection provisions explicitly or implicitly. The capacity protection is normally related with slenderness effect of the columns, force transfer in connections between columns and adjacent elements, and shear design of columns. It intends to prevent brittle failure of the structural components of bridges, so that the whole bridge system may show ductile behavior and failure during earthquake events. The objectives of this paper are to deduce needed provisions for the moderate seismicity regions such as Korea after studying current seismic design codes and to establish rational criteria provisions of seismic design for future revision of seismic design specifications.

  • PDF

Experimental and Analytical Study of Shear Connectors for the CLT-Concrete Composite Floor System (CLT-콘크리트 합성 거동을 위한 전단 연결재 부재 실험과 해석 연구)

  • Park, A-Ron;Lee, Kihak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.1
    • /
    • pp.65-73
    • /
    • 2019
  • This paper assesses the structural performance (force-slip response, slip modulus, and failure modes) of a CLT-concrete composite by conducting fifteen push-out test specimens. In addition, non-linear 3D finite element analysis was also developed to simulate the load-slip behavior of the CLT-concrete specimens under shear load. All 15 test specimens simulating the effect of concrete thickness, connection angle and penetration depth with four different shear connector types were built and tested to evaluate the flexural performance. Experimental results show that the maximum shear capacity for the composite action is obtained when the fixing angle is $90^{\circ}$ and the penetration depth of 95mm for SC normal screw was used to achieve ductile failure compared to other shear connectors.

Strengthening of an Existing Bridge for Achievement of Seismic Performance (내진성능 확보를 위한 기존교량의 보강)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.2
    • /
    • pp.181-187
    • /
    • 2009
  • After introduction of the earthquake resistant design code, it is required to achieve seismic performance of existing bridges as well as earthquake resistant design of new bridges. The achievement of seismic performance for existing bridges should satisfy the no collapse requirement based on the basic concept of earthquake resistant design, therefore, various methods with different strengthening scale should be suggested according to bridge types and importance categories. At present for typical bridges, most studied and applied strengthening methods are bearing change, pier strengthening and shear key installation for improvement of seismic performance. In this study a typical existing bridge, for which earthquake resistant design is not considered, is selected as an analysis bridge. Design changes are carried out to satisfy the no collapse requirement by way of the ductile failure mechanism and seismic performances are checked. It is shown that the seismic performance of existing bridges can be achieved by way of redesign of bridge system, e.g. determination of pier design section for substructure and change of bearing function for connections between super/sub-structure.