• Title/Summary/Keyword: ductile

Search Result 1,667, Processing Time 0.025 seconds

Influence of concurrent horizontal and vertical ground excitations on the collapse margins of non-ductile RC frame buildings

  • Farsangi, E. Noroozinejad;Yang, T.Y.;Tasnimi, A.A.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.653-669
    • /
    • 2016
  • Recent earthquakes worldwide show that a significant portion of the earthquake shaking happens in the vertical direction. This phenomenon has raised significant interests to consider the vertical ground motion during the seismic design and assessment of the structures. Strong vertical ground motions can alter the axial forces in the columns, which might affect the shear capacity of reinforced concrete (RC) members. This is particularly important for non-ductile RC frames, which are very vulnerable to earthquake-induced collapse. This paper presents the detailed nonlinear dynamic analysis to quantify the collapse risk of non-ductile RC frame structures with varying heights. An array of non-ductile RC frame architype buildings located in Los Angeles, California were designed according to the 1967 uniform building code. The seismic responses of the architype buildings subjected to concurrent horizontal and vertical ground motions were analyzed. A comprehensive array of ground motions was selected from the PEER NGA-WEST2 and Iran Strong Motions Network database. Detailed nonlinear dynamic analyses were performed to quantify the collapse fragility curves and collapse margin ratios (CMRs) of the architype buildings. The results show that the vertical ground motions have significant impact on both the local and global responses of non-ductile RC moment frames. Hence, it is crucial to include the combined vertical and horizontal shaking during the seismic design and assessment of non-ductile RC moment frames.

Ductile cracking simulation procedure for welded joints under monotonic tension

  • Jia, Liang-Jiu;Ikai, Toyoki;Kang, Lan;Ge, Hanbin;Kato, Tomoya
    • Structural Engineering and Mechanics
    • /
    • v.60 no.1
    • /
    • pp.51-69
    • /
    • 2016
  • A large number of welded steel moment-resisting framed (SMRF) structures failed due to brittle fracture induced by ductile fracture at beam-to-column connections during 1994 Northridge earthquake and 1995 Kobe (Hyogoken-Nanbu) earthquake. Extensive research efforts have been devoted to clarifying the mechanism of the observed failures and corresponding countermeasures to ensure more ductile design of welded SMRF structures, while limited research on the failure analysis of the ductile cracking was conducted due to lack of computational capacity and proper theoretical models. As the first step to solve this complicated problem, this paper aims to establish a straightforward procedure to simulate ductile cracking of welded joints under monotonic tension. There are two difficulties in achieving the aim of this study, including measurement of true stress-true strain data and ductile fracture parameters of different subzones in a welded joint, such as weld deposit, heat affected zone and the boundary between the two. Butt joints are employed in this study for their simple configuration. Both experimental and numerical studies on two types of butt joints are conducted. The validity of the proposed procedure is proved by comparison between the experimental and numerical results.

Optimal Heat Treatment Condition and Economic Effects of the Crank Shaft for marine Air-Compressor (선박용 공기압축기 크랭크샤프트의 최적열처리 조건과 경제적 효과에 관한 연구)

  • 김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.284-291
    • /
    • 1999
  • Recently the ductile cast iron is being used successfully to the parts for processing machinery vessels and gear etc. This study is mainly concerned with the heat treatment for the specimens of crank shaft which are made of ductile cast iron. The results obtained are summarized as follows. Comparing the mechanical properties of the specimens for the normalized ductile cast irons the specimen heat treated at $550^{\circ}C$ was the best for crank shaft of air-compressor. After austenizing at $910^{\circ}C$ it was observed that the higher the reheating temperature is the less tensile strength and the hardness became which was supposedly attributed to the fact that the amount of pearlite. Austenite matrix was reduced by reheating after normalizing and that as the reheating tem-perature went up the pearlite generated was less and the distance between the pearlites were widened at last made pearlite globular. In the comparsison of crank shaft for air compressor made of ductile cast iron with that made by forged steel the crank shaft made of ductile cast iron was superior in economical terms. And ductile cast iron could be practically enough if only the elonga-tion which was inferior mechanical property to forged steel could be reinforced by increasing the diameter of crank pin when designing the crank shaft.

  • PDF

Evaluation of Notch Location Effect on Ductile Crack Initiation at Strength Mismatched Joints by Finite Element Method and Ultrasonic-Mechatronics System (유한요소법과 초음파 메카트로닉스 시스템에 의한 강도적 불균질 이음부의 노치위치에 따른 균열발생 한계 조건)

  • An Gyu-Baek;Bang Han-Sur;Toyoda Masao
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.87-92
    • /
    • 2005
  • It has been well hewn that ductile fracture of steels is accelerated by triaxial stresses. The characteristics of ductile crack initiation in steels are evaluated quantitatively using a two-parameters criterion based on equivalent plastic strain and stress triaxiality. The present study focuses on the effects of strength mismatch, which can elevate plastic constraint due to heterogeneous plastic straining, on the critical condition for ductile fracture initiation usinga two-parameter criterion. Fracture initiation testing has been conducted under static loading using notched round bar specimens which had different notch locations. This study provides the fundamental clarification of the effect of strength mismatching and effect of notch location on the critical condition to ductile crack initiation from notch root using fuite element method and ultrasonic-mechatronics system. The critical condition of ductile crack initiation from notch root of strength mismatched tensile specimens under static loading appeared to be almost the same as those of homogeneous tensile specimens with circumferential sharp notch specimen. Also, the effect of notch location in mismatched specimens was estimated using finite element(FE) analyses.

Bree's interaction diagram of beams with considering creep and ductile damage

  • Nayebi, A.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.6
    • /
    • pp.665-678
    • /
    • 2008
  • The beams components subjected to the loading such as axial, bending and cyclic thermal loads were studied in this research. The used constitutive equations are those of elasto-plasticity coupled to ductile and/or creep damage. The nonlinear kinematic hardening behavior was considered in elastoplasticity modeling. The unified damage law proposed for ductile failure and fatigue by the author of Sermage et al. (2000) and Kachanov's creep damage model applied to cyclic creep and low cycle fatigue of beams. Based on the results of the analysis, the shakedown limit loads were determined through the calculation of the residual strains developed in the beam analysis. The iterative technique determines the shakedown limit load in an iterative manner by performing a series of full coupled elastic-plastic and continuum damage cyclic loading modeling. The maximum load carrying capacity of the beam can withstand, were determined and imposed on the Bree's interaction diagram. Comparison between the shakedown diagrams generated by or without creep and/or ductile damage for the loading patterns was presented.

Effect of Geometrical Discontinuity on Ductile Fracture Initiation Behavior under Static Leading

  • An, G.B.;Ohata, M.;Toyoda, M.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.1
    • /
    • pp.51-56
    • /
    • 2003
  • It is important to evaluate the fracture initiation behaviors of steel structure. It has been well known that the ductile cracking of steel would be accelerated by triaxial stress state. Recently, the characteristics of critical crack initiation of steels are quantitatively estimated using the two-parameters, that is, equivalent plastic strain and stress triaxiality, criterion. This study is paid to the fundamental clarification of the effect of notch radius, which can elevate plastic constraint due to heterogeneous plastic straining on critical condition to initiate ductile crack using two-parameters. Hense, the crack initiation testing were conducted under static loading using round bar specimens with circumferential notch. To evaluate the stress/strain state in the specimens was used thermal elastic-plastic FE-analysis. The result showed that equivalent plastic strain to initiate ductile crack expressed as a function of stress triaxiality obtained from the homogeneous specimens with circumferential notched under static loading. And it was evaluated that by using this two-parameters criterion, the critical crack initiation of homogeneous specimens under static loading.

  • PDF

Evaluation of the Ductile-Brittle Transition Behavior of fracture Toughness by Material Degradation (열화에 따른 파괴인성치의 연성-취성 천이거동 평가)

  • 석창성;김형익;김상필
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.140-147
    • /
    • 2003
  • As the huge energy transfer systems like as nuclear power plant and steam power plant are operated for a long time at a high temperature, mechanical properties are changed and ductile-brittle transition temperature is raised by degradation. So it is required to estimate degradation in order to assess the safety, remaining life and further operation parameters. The sub-sized specimen test method using surveillance specimen was developed for evaluating the integrity of metallic components. In this study, we would like to present the evaluation technique of the ductile-brittle transition temperature by the sub-sized specimen test. The four classes of the thermally aged 1Cr-1Mo-0.25V specimens were prepared using an artificially accelerated aging method. The tensile test and fracture toughness test were performed. The results of the fracture toughness tests using the sub-sized specimens were compared with the evaluation technique of the ductile-brittle transition temperature.

Design of Hexagonal Fitting Nut Preform Considering Ductile Fracture (연성파괴를 고려한 6각 피팅너트 예비성형체 설계)

  • Park T. J.;Kim D. J.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.197-200
    • /
    • 2001
  • In the multi-stage former, manufacture of hexagonal fitting nut was generated in a defective products about $70{\~}80\%$. Defective products reduced in a product stiffness and increased a product cost. Defects for manufacturing hexagonal fitting nut caused in a increase of ductile fracture value. So in the study, a preform designed to reduce ductile fracture value and designed preform verified through the finite element simulation. In conclusion, Ductile fracture value reduced if A round dimension of preform reduced and a part of opposition angle contributed in Plenty a volume.

  • PDF

A Study on the Mechanical Properties and Fatigue Limit of the Austenitizing Treatment Conditions in Austempered Ductile Iron (오스템퍼링처리한 구상흑연주철의 오스테나이트화 조건에 따른 기계적 성질 및 피로한도에 관한 연구)

  • Kim, Min-Gun;Lim, Bok-Kyu
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.3-8
    • /
    • 2004
  • This study was performed to investigate the effect of two step austenitized treatment on the mechanical properties and fracture characteristic of the ductile cast iron and austempered ductile cast iron(ADI). The obtained results of this study were as follows. The matrix structures of specimens were changed differently by austenitizing heat treatment. Microstructure of austempered ductile cast iron obtained by two step austenitized treatment was bainitic ferrite and retained austenite. With two step austenitized treatment, vield strength, tensile strength and hardness decreased, while the elongation increased.

  • PDF