• Title/Summary/Keyword: dual-polarized antenna

Search Result 78, Processing Time 0.026 seconds

On the Utilization of Polarization Dependency Acquired by an Intentionally Misaligned Antenna Array for Mitigation of GPS Jammers

  • Park, Kwansik;Seo, Jiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.291-296
    • /
    • 2021
  • Recently, the dual-polarized antenna array has drawn attention due to the dependency of its signal processing gain on the signal polarization. Even though this polarization dependency makes it possible to mitigate a non-right-hand circularly polarized (non-RHCP) jamming signal from the same direction as a GPS signal, the dual-polarized antennas are not yet widely used for various applications. This study suggests a method that can acquire the polarization dependency of the signal-processing gain by intentionally misaligning antenna elements in a single-polarized antenna array. The simulation results show that the proposed method can successfully mitigate a non-RHCP jammer from the same direction as a GPS signal as if a dual-polarized antenna array does and provide comparable signal-to-jammer-plus-noise ratio (SJNR) performance with a completely aligned single-polarized antenna array and a dual-polarized antenna array.

Performance Analysis of GPS Anti-Jamming Method Using Dual-Polarized Antenna Array in the Presence of Steering Vector Errors

  • Park, Kwansik;Seo, Jiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.2
    • /
    • pp.59-63
    • /
    • 2020
  • The antenna arrays are known to be effective for GPS anti-jamming and the performance can be improved further if a dual-polarized antenna array is used. However, when the Minimum Variance Distortionless Response (MVDR) beamformer is used as a signal processing algorithm for the dual-polarized antenna array, the anti-jamming performance can degrade in the presence of errors in the steering vector that is a key factor of the MVDR beamformer. Therefore, in this paper, the effect of the steering vector error on the anti-jamming performance of the dual-polarized antenna array is analyzed by simulations and the result is compared to that of the single-polarized antenna array.

Dual-Polarized Annular Ring Patch Antenna for 2.4 GHz Doppler Radar

  • Kim, Seong-Ho;Yook, Jong-Gwan;Cho, Sung-Ho;Jang, Byung-Jun
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.183-185
    • /
    • 2010
  • A 2.4 GHz dual-polarized antenna for a Doppler radar is studied. The proposed dual-polarized antenna using a stacked annular ring patch with two co-centric gap-coupled feed lines and a $90^{\circ}$ hybrid exhibits fairly good performance of 22 dB isolation at a center frequency of 2.4 GHz. Using a $90^{\circ}$ hybrid, a right-handed circular polarization for the transmitter and a left-handed circular polarization for the receiver are implemented. The gain of the designed antenna is about 0 dBi over operating frequencies. The antenna size including a ground plane is only $40{\times}40\;mm^2$.

ANALYSIS ON THE INFLUENCE OF XPD IN DUAL-POLARIZED TRANSMISSION

  • Park, Durk-Jong;Ahn, Sang-Il
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.784-787
    • /
    • 2006
  • Dual-polarized transmission is one of the effective methods to transmit such a high speed data thanks to two independent channel leads to the orthogonal feature between RHCP (Right-Hand Circular Polarization) and LHCP (Left-Hand Circular Polarization). However, in practical case, the transmitted signal by RHCP polarized antenna in satellite can be occurred at the output port of LHCP polarized antenna in ground station, vice versa. XPD (Cross-Polarization Discrimination) is the ratio of the signal level at the output of a receiving antenna that is nominally co-polarized to the transmitting antenna to the output of a receiving antenna of the same gain but nominally orthogonally polarized to the transmitting antenna. In this paper, the detailed estimation of XPD within the interface between satellite and ground station is written and the influence of XPD to link performance is also described.

  • PDF

Design of a dual band circularly polarized antenna for 900 MHz / 2.45 GHz Hand-held RFID Reader (900 MHz / 2.45 GHz 대역 휴대용 FRID 리더를 위한 이중 대역 원형편파 안테나 설계)

  • Kim, Jeong-Pyo;Lee, Yoon-Bok;Seong, Won-Mo;Choi, Jae-Hoon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.235-240
    • /
    • 2005
  • This paper presents a dual band circularly polarized microstrip patch antenna. The antenna consists of two corner truncated patches implemented in one plane and single feed point. The input signal is directly excited to the patch 2 and the patch 1 is fed from patch 2 by coupling between two patches. The antenna is operated at 900 MHz and 2.45 GHz bands and has the right hand circularly polarized radiation pattern at all. The measured gains of the antenna are 2.95 dBic at 900 MHz band and 4.6 dBic at 2.45 GHz band.

  • PDF

Development of Doppler Radar Using Compact Dual-Circularly Polarized Antenna (소형 이중 원형편파 안테나를 이용한 도플러 레이다 개발)

  • Kim, Tae-Hong;Lee, Hyeonjin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.3
    • /
    • pp.121-124
    • /
    • 2015
  • In this paper, we developed the compact Doppler radar using the compact dual-circularly polarized antenna for medical application. The operating frequency is 2.47 GHz for considering ISM band. In order to decrease the size of the entire system, we designed the compact antenna and located the circuit board at the back of the antenna. The simulation of the proposed antenna was performed by the finite difference time domain (FDTD) method. The total volume of the proposed system is $65{\times}45{\times}6mm^3$ including the antenna. From the experiment, the developed bio-radar could be used to support the device for medical applications.

Dual-Band Circularly Polarized Stack-Ring Antenna

  • Sung, Youngje
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.1
    • /
    • pp.37-41
    • /
    • 2019
  • A stack-ring configuration is proposed for designing a dual-band circularly polarized (CP) antenna. Each ring generates different resonant frequencies. A good CP performance at both resonant frequencies is achieved by adjusting the relative distance between the two rings. The two operating bands are separated with a small frequency ratio of 1.07. Measured results show that radiation patterns with good CP characteristics are obtained at the two resonant frequencies.

Transmit Antenna Selection for Dual Polarized Channel Using Singular Value Decision

  • Lee Sang-yub;Mun Cheol;Yook Jong-gwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9A
    • /
    • pp.788-794
    • /
    • 2005
  • In this paper, we focus on the potential of dual polarized antennas in mobile system. thus, this paper designs exact dual polarized channel with Spatial Channel Model (SCM) and investigates the performance for certain environment. Using proposed the channel model; we know estimates of the channel capacity as a function of cross polarization discrimination (XPD) and spatial fading correlation. It is important that the MIMO channel matrix consists of Kronecker product dividable spatial and polarized channel. Through the channel characteristics, we propose an algorithm for the adaptation of transmit antenna configuration to time varying propagation environments. The optimal active transmit antenna subset is determined with equal power allocated to the active transmit antennas, assuming no feedback information on types of the selected antennas. We first consider a heuristic decision strategy in which the optimal active transmit antenna subset and its system capacity are determined such that the transmission data rate is maximized among all possible types. This paper then proposes singular values decision procedure consisting of Kronecker product with spatial and polarize channel. This method of singular value decision, which the first channel environments is determined using singular values of spatial channel part which is made of environment parameters and distance between antennas. level of correlation. Then we will select antenna which have various polarization type. After spatial channel structure is decided, we contact polarization types which have considerable cases It is note that the proposed algorithms and analysis of dual polarized channel using SCM (Spatial Channel Model) optimize channel capacity and reduce the number of transmit antenna selection compare to heuristic method which has considerable 100 cases.

Design of Dual-Polarized Monopulse Cassegrain Antenna for W-Band Millimeter-Wave Seeker (W-대역 탐색기용 이중편파 모노펄스 카세그레인 안테나 설계)

  • Lee, Kook Joo;Jung, Chae-Hyun;Baek, Jong-Gyun;Park, Chang-Hyun;Nam, Sangwook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.261-268
    • /
    • 2016
  • In this paper, dual-polarized monopulse cassegrain antenna for W-band millimeter-wave seeker was proposed and the performances were verified by the measured results of the fabricated antenna. Dual-polarized monopulse Cassegrain antenna consists of main/subreflector, dual-polarized feed horn and monopulse comparator. The proposed feed horn has $2{\times}2$ array square waveguide feeding structure to make monopulse signals and it was designed using 90 degree rotational symmetric structure to receive dual-polarized signals. At the sum and difference channel, the measured vertical and horizontal polarization radiation pattern were similar. Measurement gains are 35.1 dBi for v-pol. and 35.6 dBi for h-pol. at the center frequency with 0.5dBi difference between each polarization and the side lobe level is below -21.6 dB.

Maximum Ratio Transmission for Space-Polarization Division Multiple Access in Dual-Polarized MIMO System

  • Hong, Jun-Ki;Jo, Han-Shin;Mun, Cheol;Yook, Jong-Gwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3054-3067
    • /
    • 2015
  • The phenomena of higher channel cross polarization discrimination (XPD) is mainly observed for future wireless technologies such as small cell network and massive multiple-input multiple-output (MIMO) system. Therefore, utilization of high XPD is very important and space-polarization division multiple access (SPDMA) with dual-polarized MIMO system could be a suitable solution to high-speed transmission in high XPD environment as well as reduction of array size at base station (BS). By SPDMA with dual-polarized MIMO system, two parallel data signals can be transmitted by both vertically and horizontally polarized antennas to serve different mobile stations (MSs) simultaneously compare to conventional space division multiple access (SDMA) with single-polarized MIMO system. This paper analyzes the performance of SPDMA for maximum ratio transmission (MRT) in time division duplexing (TDD) system by proposed dual-polarized MIMO spatial channel model (SCM) compare to conventional SDMA. Simulation results indicate that how SPDMA utilizes the high XPD as the number of MS increases and SPDMA performs very close to conventional SDMA for same number of antenna elements but half size of the array at BS.