• Title/Summary/Keyword: drying-wetting cycles

Search Result 35, Processing Time 0.018 seconds

A Study on Chemical Resistance of Cement Mortar Blended with Thermally Activated Diatomite containing Heavy Metals form EAF Dust (EAF Dust사의 중금속을 함침한 활성 규조토가 혼합된 시멘트 모르터의 내화학성에 관한 연구)

  • 류한길;임남웅;박종옥
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.1
    • /
    • pp.143-151
    • /
    • 1997
  • Chemical resistance of the cement mortar containing the Thermally Activated Diaomite(TAD) and H.M.(Heavy Metals) has been studied. The H.M.. extracted from EAF(Electrica1 Arc Furnace) Dust. were saturated with diatomite. The diatomite was then thermally activated at $750{\circ}C$ for 30minutes and powdeled. The powder was mixed with a portland cement on a weight basis from 0%. 2.5%. 5.0%. 10%. 20%. The optimum mixture. after those mixtures were subjected to compressive strength(7 and 28days) and leaching bchaviour of H.M.. was tested for its experiment on Wet/Dry cycles and chemical resistance(e.q. imrncrsion in 5%(Conc.) of H2S04, CaC12 and hlgSO4. It was shown that the cement, mortar containing 10% of' P.D. gave a rise to the remarkable increase in compressive strength. The compressive strength was generally decrease beyond the addition of 10% of P.D. The maximum $496kgf/cm^2$ of 28days compressive strength was acheiveti when 10% of P.D. was added to the cement mortar.

Effect of Waste Glass Wool on Mechanical Properties of Concrete (폐글라스울이 콘크리트의 역학적 특성에 미치는 영향)

  • Kim, Jeong-Tae;Choi, Woo-Hyuk;Chung, Chul-Woo;Lee, Jae-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.2
    • /
    • pp.117-123
    • /
    • 2016
  • Glass wool is a material that has been used as a heat insulator in various fields including construction industry. Since it is a nonflammable material, it does not generate toxic gases on fire, and thus public agencies recommend using glass wool as a heat insulator instead of other organic materials. However, repeated drying and wetting cycles can deteriorate thermal property of glass wool due to the shrinkage and reduction in pore size. For this reason, it needs to be replaced periodically, and waste materials are generated. This research aims to utilize waste glass wool as additives for increasing mechanical properties of concrete. According to the experimental results, it was found that glass wool has weak pozzolanic activity, and beneficial effect on both compressive and flexural strength. The optimum amount found in this experimental work was 0.5% volumetric addition to the concrete.

Development of Chloride Penetration Analysis Program Considering Environmental Conditions (환경조건을 고려한 염소이온 침투해석 프로그램 개발)

  • Kim, Ki Hyun;Jang, Seung Yup;Cha, Soo Won;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.709-718
    • /
    • 2008
  • Developed is a chloride penetration analysis program in which changes of environmental conditions such as temperature, humidity and external chloride concentration, and the diffusion, convection and binding of chlorides are considered. In order to consider the changes of environmental conditions, analyses for temperature and moisture distribution are implemented simultaneously, and variation of diffusion coefficients due to temperature, humidity and age is also considered. By comparing the calculated total chloride contents with some experimental data, it has been confirmed that the proposed analysis program can trace measured chloride distribution well. Also, through some example analyses, the mechanism of accumulation of chlorides at near surface and acceleration of corrosion of steel reinforcement in case that the moisture distribution changes according to repeated drying and wetting cycles have been verified.

Corrosion Resistance of Cr-bearing Rebar in Concrete Subjected to Carbonation and Chloride Attack (중성화와 염해의 복합 열화 환경하의 콘크리트 내에서의 Cr강방식철근의 방식성)

  • Tae, Sung-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.115-122
    • /
    • 2006
  • Ten types of steel bars having different Cr contents were embedded in concretes with chloride ion contents of 0.3, 0.6, 1.2, and $2.4kg/m^3$ to fabricate specimens assuming such deteriorative environments. After being carbonated to the reinforcement level, these concretes were subjected to corrosion-accelerating cycles of heating/cooling and drying/wetting. The time-related changes in the corrosion area and corrosion loss of the Cr-bearing rebars were then measured to investigate their corrosion resistance. The results revealed that in a deteriorative environment prone to both carbonation and chloride attack, corrosion resistance was evident with a Cr content of 7% or more and 9% or more in concretes with chloride ion contents of 1.2 and $2.4kg/m^3$, respectively.

Evaluation of Apparent Chloride Diffusion Coefficient of Fly Ash Concrete by Marine Environment Exposure Tests (해양 환경 폭로 시험을 통한 FA 콘크리트의 겉보기 염화물 확산계수 평가)

  • Yoon, Yong-Sik;Lim, Hee-Seob;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.119-126
    • /
    • 2019
  • In case of RC(Reinforced Concrete) structures which are constructed in coastal areas, chloride ions in sea water corrode the steel rebar in concrete. Especially in coastal areas, RC structures are affected by not only immersion of sea water, but also tidal of sea water and airborne chloride ions. In this study, marine environment exposure tests are conducted, considering 3 types of exposure environments(immersion zone, tidal zone, splash zone) and the exposure periods of 180 days, 365 days, and 730 days. Also, the concrete mixtures for this study are established, considering 3 levels of W/B(Water to Binder) ratio(0.37, 0.42, 0.47) and 2 levels of substitution rate of Fly ash(0 %, 30 %). In all exposure environments, Fly ash concrete has lower apparent chloride diffusion coefficients than OPC concrete. It is thought that fly ash's pozzolan reaction improves chloride resistance of concrete. Fly ash concrete has up to 63.5 % of decreasing rate in 180 days of exposure and up to 55.8 % of decreasing rate in 730 days of exposure, based on diffusion coefficients of OPC concrete. As a result of evaluation about effects of exposure environments, apparent chloride diffusion coefficients of fly ash concrete are evaluated in order of tidal zone, immersion zone, and splash zone. In tidal zone, It is thought that repeated cycles of wetting and drying of sea water cause the diffusion of chloride ions rapidly.