• Title/Summary/Keyword: drying process

Search Result 1,282, Processing Time 0.032 seconds

Operation of microcomputer aided convective drying system (마이크로컴퓨터 제어 열풍건조장치의 제작운영)

  • Jeong, Sin-Gyo;Gang, Jun-Su;Choe, Jong-Uk
    • Food Science and Preservation
    • /
    • v.1 no.2
    • /
    • pp.99-105
    • /
    • 1994
  • To convert the analog signal from the drying process into the digital signal, the interface circuit was designed and built. To measure the weight and temperature during drying process, strain gauge type load cell and temperature transducer composed of pt 100 $\Omega$ thermometers and wheatstone bridge circuits were built and used. The temperature control device was composed of photocoupler and triac. Microcomputer aided experimental convective drying system was built with above cricuits and devices. Drying characteristics of onions can be estimated using this system.

  • PDF

Process Optimization of Red Pepper Drying for the Improvement of Drying Efficiency (건조효율 향상을 위한 고추건조공정의 최적화)

  • Chung, Sun-Kyung;Keum, Dong-Hyuk;Lee, Dong-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.428-439
    • /
    • 1992
  • Drying process in a fixed bed red pepper dryer was modeled and simulated. Drying efficiency describing the effectiveness of energy usage in red pepper drying was defined as a ratio of energy used for moisture evaporation to total energy consumption, and expressed in combination of measurable temperature variables. The efficiency was compared with real evaporative efficiency and tested in the simulated and experimental drying. An overall drying efficiency was derived, and analyzed for various control variables consisting of drying temperature, air recycle ratio and air flow rate. Optimal operation conditions of drying was then searched by Box's complex method by using it as an objective function. Carotenoids retention was simulated and put as a constraint of product quality in the optimization. The optimization results gave that two staged drying operation could improve the ding efficiency compared with single staged drying. As a technique for further energy saving automatic termination of drying appeared feasible by monitoring an exit air temperature from dryer.

  • PDF

Drying Characteristics of Osmotically Pre-treated Carrots (삼투처리한 당근의 건조 특성)

  • Youn, Kwang-Sup;Choi, Yong-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.1126-1134
    • /
    • 1996
  • The physical characteristics changes of carrots during drying were studied to minimize the quality degradation by applying improved drying process and pretreatment method. Physico-chemical properties of the product were analyzed, and then, drying mechanisms were explained by diffusion coefficients and drying models. In hot air drying process, the drying and rehydration efficiencies were high at low relative humidity and high temperature. Browning degree and specific volume also showed similar trend to drying efficiency. Diffusion coefficient, which describes moisture transfer, was also high at low relative humidity and at high temperature. It was verified using. Arrhenius equation that drying process was influenced by temperature. It was also observed during experiment that temperature changes were more effective in drying than relative humidity changes. Quadratic model was the most fittable in explaining the process. As a result of analyzing the experimental data with respect to the drying time, the contents of carotene and moisture could be modeled as a polynomial. As the air velocity increased, drying performance and rehydration efficiency increased.

  • PDF

A Study on the Freeze Drying Rate with Frozen Layer (동결층소멸을 이용한 동결건조 속도에 관한 연구)

  • Hong, S.S.;Lee, H.M.;Oh, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.2
    • /
    • pp.105-111
    • /
    • 1990
  • The drying rate in freeze drying was obtained by experiment of garlic moisture contents depending on the drying time. Freeze drying experiment of garlic juice was carried out in vaccum freeze drier of laboratory scale by backface heating, and a mathematical model is also used to simulate the process of simultaneous heat and mass transfer in freeze drying to compare with experimental data.

  • PDF

Effects of Drying Methods Based on Exhaust Cycle and Time on the Quality and Drying of Red Peppers

  • Nam, Sang Heon;Ha, Yu Shin;Kim, Tae Wook
    • Journal of Biosystems Engineering
    • /
    • v.39 no.2
    • /
    • pp.101-110
    • /
    • 2014
  • Purpose: The purpose of this study is to develop a system to optimize drying potential energy of the exhausted hot air by changing relative humidity of the air. This study modified the conventional drying method into a drying method changing exhaust cycle and time in order to control the relative humidity of the exhausted hot air during drying process. Method: A valve on the vent was controlled according to a preset time to change the exhaust cycle and time. This study analyzed the influence of the two different types of drying method on the drying characteristics, required energy, and quality of the dried peppers: conventional drying method exhausting hot air continuously and new drying method controlling exhaust cycle and time. Results: Drying characteristics based on exhaust time showed that drying time increased with exhaust time, and specific energy consumption was reduced by 28% from 18.39 MJ/kg (conventional method) to 13.24 MJ/kg when exhaust time was set to one minute. Drying characteristics based on heating time showed that drying time increased with heating time and specific energy consumption was reduced by 30% from 18.39 MJ/kg (conventional method) to 12.87 MJ/kg when exhaust time was set to 22 minutes. Drying characteristics based on exhaust cycle showed that drying time increased with exhaust cycle, and specific energy consumption was reduced by 31% from 18.39 MJ/kg (conventional method) to 12.69 MJ/kg when exhaust time was set to one minute and exhaust cycle was set to 22 minutes before drying and 40 minutes after drying. The quality of the dried red peppers showed that capsaicin, color, and sugar content were high as 34.87 mg/100g, 66.33, and 11.87%, respectively, when exhaust time was set to one minute and exhaust cycle was set to 22 minutes before drying and 40 minutes after drying. Conclusions: In order to utilize the drying potential energy of the exhausted air during drying process, the conventional drying method was modified into the drying method controlling exhaust cycle and time. The results showed that drying with exhaust cycle of one minute was more efficient in terms of drying time, required energy, and quality of the dried peppers than the one with exhaust cycle of 20~40 minutes.

The Effect of Mass Transfer on the Cure Properties of the Urea Resin Moulding Compounds Under the Drying Process (건조 공정 중 요소 수지 성형재료의 경화 특성에 대한 물질전달 효과)

  • Kim, Sang Yeul;Choi, Il Gon;Kim, Byoung Chul
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.681-686
    • /
    • 2002
  • In the industrial field, the theory of drying process is different from the practical application, and it is effective to reduce energy by recirculation of the heat of exhausting gas. But the study of this field may not be performed still. The cure properties of the urea resin moulding compounds was investigated according to drying temperature, drying time, recycle rate of exhausting gas and moulding temperature in the process of drying and moulding. We obtained the following results; water content of material decreases with increasing drying time and drying temperature, and the rate of drying also decreases with increasing recycle rate of exhausting gas. Specially, The cure fluidity of the urea resin moulding compounds decreases, with increasing drying temperature, recycle rate of exhausting gas and moulding temperature. And the correlation equations on water content and cure fluidity of the urea resin moulding material were obtained through a regression analysis of experimental data.

Hot Petroleum Drying Method to the Preparation of Multicomponent Oxide Ceramic Material (다성분계 산화물의 요업재료 제조를 위한 석유 증발 건조 방법)

  • 변수일
    • Journal of the Korean Ceramic Society
    • /
    • v.14 no.3
    • /
    • pp.163-168
    • /
    • 1977
  • As a wet chemical drying process "hot petroleum drying method" was applied and developed for preparing uniformly fine oxide powder with high purity and sinterreactivity. Using this method solution of sulfates was dried in hot petroleum bath (~17$0^{\circ}C$) to sulfate powder from which corresponding mullite doped by Fe3+ ion was formed. Particle size, shape, decomposition by heat, and phase identification of sulfate andoxide powders determined by DTA, TGA, X-ray diffraction, analysis and electron microscopy: sulfate powder prepared by this drying method is an intimate mixture of the amorphous form of uniformly and finely distributed spherical particles (0.05-0.1$\mu$). Mullitization with the sulfate powder occurs at 110$0^{\circ}C$ in air. The morphology of mullite particle made by firing the sulfate powder at 135$0^{\circ}C$ in oxygen atmosphere is granular of 0.1-0.3$\mu$ in size. This drying process proved to be a very effective method for preparing fine, homogeneous, and highly sinterreactive multicomponent oxide powder without conventional ceramic process of mixing, milling, and granulating. This process can be also applied for preparing electronic ceramic materials which are requisite for high purity and homogeneity.mogeneity.

  • PDF

Synthesis and Characterization of Cathode Materials for the Lithium Secondary Batteries by Spray Drying Method

  • Oh, Si-Hyoung;Jeong, Woon-Tae;Cho, Won-Il;Cho, Byung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.1
    • /
    • pp.42-46
    • /
    • 2005
  • It has been known that the synthesis of the cathode materials for the lithium rechargeable batteries by the sol-gel process has many advantages over the conventional solid-state method. It has been, however, a continuing issue that new additional steps should be introduced to commercialize this process. In this work, spray drying was introduced to the existing sol-gel process as a continuous mass production method of the pre-heat treatment precursor materials. The precursors of $LiCoO_2$ and $LiNi_{0.8}Co_{0.2}O_2$ were continuously produced through spray drying from the solution containing stoichiometric amount of lithium, cobalt, and nickel sources as well as a chelating agent. The process variables, such as pH of the starting solution, spray drying conditions, and calcination conditions were optimized. The XRD pattern for the synthesized material indicated a good crystallinity with a layered structure.

Manrfacturing Process of Solid Fuel Using Food Wastes and Paper Sludges (음식물 쓰레기와 제지슬러지를 이용한 고체연료 제조)

  • Kim, Yong-Ryul;Son, Min-Il
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.437-444
    • /
    • 2010
  • Dry Process(natural drying, hot-air drying, oil fry drying), optimized mixture ratio and the condition of carbonization was carried out in order to improve the product durability develop eco-friendly solid fuel mixing food waste and paper sludge. As a result of the experiment, oil fry drying process was the fastest method for drying food waste and paper sludge mixture that contains 80% water inside, and the optimized mixture ratio to minimize the generating concentration of chlorine gas against caloric value of mixture ratio was 7:3. Additionally proper temperature of product carbonization was about $200^{\circ}C$ and shown increasing product durability through the carbonization. Therefore, the pelletized solid fuel be shaped diameter around 0.5cm, length 2cm under which was pulverized and molded using 7:3 mixture of food waste, and paper sludge was the eco-friendly solid fuel possible to be industrialized which is consist of chlorine concentration of below 2.0wt% and the lowest caloric value of over 5,000kcal/kg. In conclusion, this developing manufacturing process of the solid fuel can be interpreted to contribute alternative energy development in accordance with low carbon and green growth era.

Drying Characteristics of Rough Rice in Continuous Dryer

  • Song, D.B.;Koh, H.K.;Keum, D.H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.863-877
    • /
    • 1996
  • A drying model to predict the drying process in continuous dryer was developed and proved by drying experiments. The experiment showed that the difference of moisture contents between the predicted and the observed was within 0.5%(wb). There was no cracked rice found even in high drying rate with the inlet moisture content over 23%(wb), and tempering treatment in the same temperature reduced the ratio of cracked rice. There was a little difference in the ratio of cracked rice between 40$^{\circ}C$ and 45$^{\circ}C$ drying temperatures with the final drying moisture content (14.5% wb), and the cracked rice increased at 55$^{\circ}C$. As a results, it was better to make fast drying on the rice over 23%(wb) inlet content it was recommended to keep drying at 45$^{\circ}C$.

  • PDF