• Title/Summary/Keyword: drying process

Search Result 1,287, Processing Time 0.021 seconds

Improvement of Physical and Drying Properties of Large Diameter and Long Axis Moso Bamboo (Phyllostachys pubescens) Poles Using Heat Treatment

  • Kyoung-Jung KIM;Young-Jin KIM;Se-Yeong PARK
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.447-447
    • /
    • 2023
  • This study aimed to convert underutilized moso bamboo into high-value added products such as fences, interior materials, lighting fixtures, and accessories. Green moso bamboo poles with a diameter of approximately 10 cm and a length of approximately 3.7 m were heat treated at 140℃ using a large-scale kiln. The processing time was meticulously adjusted through various stages, including pretreatment (6-8 hours at 60℃), cooking (8-10 hours at 100℃), steaming (26-30 hours at 120℃), heating (4-6 hours at 140℃), and finally, cooling (below 80℃). A meticulously designed heat treatment process has enabled efficient mass production of moso bamboo poles with improved qualities, including minimal splitting, moisture levels below 3%, and a specific gravity of 1.05. The focus of this study was to present the physical and drying properties, such as color, dimensional change, specific gravity, moisture content, and splitting, observed during the heat treatment process.

Bactericidal Effect of Ultraviolet and Dry Treatment on Bacterial Contaminants in Facial Masks (Ultraviolet 및 건조 처리에 의한 마스크에 오염된 미생물 살균 효과)

  • Park, Seul-Ki;Lee, Da-eun;Jo, Du-Min;Song, Mi-Ru;Kim, Young-Mog
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.1
    • /
    • pp.95-101
    • /
    • 2022
  • Due to the pandemic caused by COVID-19, the demand for face masks is soaring and has often caused a shortage. The aim of this study was to evaluate the effect of ultraviolet (UV) and drying treatments on microbial contaminants in facial masks. To conduct this study, standard procedures were designed to develop samples contaminated by the control bacteria Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The contamination level of the standard samples was approximately 6.30 × 106 CFU/ml, and the UV light treatment was performed 1, 3, 5, and 7 times. To evaluate the effect of the UV and drying treatments, the masks were first treated with UV 1, 2, and 3 times, followed by the drying process. As a result, the mask contaminated with E. coli and P. aeruginosa showed a bacterial rate of approximately 99.9% after 1 UV irradiation, and in the case of the S. aureus-contaminated mask, it exhibited a bactericidal rate of approximately 99.9% after 7 UV irradiations. However, when the drying process was included after UV irradiation, all the samples contaminated with E. coli, S. aureus, and P. aeruginosa showed a bactericidal rate of 99.9% or more. The results of this study suggest that UV and drying treatments can effectively reduce the bacterial contaminants in facial masks. In addition, these results provide fundamental data and appropriate sterilization methods for reusing masks.

Application of Fixatives to Freeze Dried Rose Petals

  • Jo, Myung-Hwan;Kim, Tae-Yun;Hong, Jung-Hee
    • Journal of Environmental Science International
    • /
    • v.17 no.11
    • /
    • pp.1227-1233
    • /
    • 2008
  • The effect of freeze drying and fixatives in post-treating freeze drying on the morphological properties of the rose (Rosa hybrida L.) petal were investigated for the production of high quality of freeze dried rose. The morphology including form and color of the dried flowers of cut rose were depended on the drying methods. The drying time was extended due to their density and water content, and was shorter in the freeze drying than that in the natural and hot air drying. Freeze dried process for dried flowers took 2 days in a freeze dryer and did not cause shrinkage or toughening of rose petal being dried, preserving its natural shape and color. The diameter of freeze dried flowers showed little reduction compared to fresh flowers. In Hunter color values of petals of freeze dried flowers, L and a values were high and showed little variations in comparison to fresh petals. Freeze drying led to a noticeable increase in anthocyanin contents in petals, suggesting that anthocyanin contents play an important role in the acquisition of freezing tolerance. Exposure of flowers to freeze drying was accompanied by an increase in the carotenoid content. In the post-treating freeze drying, epoxy resin, a fixative, applied alone or in combination to petals of freeze dried flowers showed efficient coating for the protection from humidity and sunlight. Combined application of epoxy and acetone to freeze dried petals permitted maintenance of natural color and excellent tissue morphology, showing color stability and shiny texture in surface of petals. These findings suggest that application of fixatives to freeze dried rose petals improves the floral preservation and epoxy coating provides good quality in the freeze dried flower product.

Surface modifiers on the waterglass aerogels prepared by ambient drying process (상압건조 물유리 에어로젤에 대한 표면개질제의 영향)

  • Kim, Tae-Jung;Nahm, Sahn;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.173-178
    • /
    • 2006
  • Silica aerogel with ultra low density and high porosity has been focused on versatile application due to its fascinating properties. Ambient drying process of waterglass, in this study was researched to fabricate a crack-free monolith body in the point view of cost effective way. Wet gel was obtained by removing of $Na^{+}$ ions in waterglass, which contains 8 wt% of $SiO_{2}$. Xylene, which has a low vapor pressure, was used as a solution substitutor to prevent the formation a cracks during drying. Various surface modifiers like as hexamethyldisilazane (HMDSZ), trimethylchlorosilane (TMCS), methyltriethoxylsilane (MTES), methyltrimethoxysilane (MTMS) and phenyltriethoxysilane (PTES) were used in order to improve hydrophobicity of the waterglass Silica aerogel. Some physical properties of the surface modified aerogels were investigated by FT-IR, TGA, BET and SEM. Hydrophobicity and hydrophilicity of Silica aerogel is attributed to the Si-OH bond and the non-polar C-H bond groups on the surface of aerogel. Crack-free waterglass aerogel with >90 % of porosity, 17 nm of pore size and <0.15 $g/cm^{3}$ of density was prepared. HMDSZ and TMCS are effective as a surface modifier

Flow and Performance Analysis of Atomizing Nozzle (아토마이징 노즐의 유동 및 성능해석)

  • Kim, Bong-Hwan;Ryu, Kwang-Hyun;Jung, Eun-Ik;Cho, Eun-Man;Lee, Jung-Eun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.3
    • /
    • pp.42-48
    • /
    • 2010
  • The aim of this study is to investigate the influence of driving atomizing nozzle position, the slope of sludge entering tube and supplying air flow rate on the performance of sludge air dryer. This paper deals with optimization of the geometry of the atomizing nozzle for sludge drying using computational fluid dynamics and drying performance test using pilot air dryer. The air drying system was composed of the atomizing nozzle which made high-speed fluid field. dewatered cake was crushed at the high-speed zone as the first step and formed intto dried powder of sphere shape by the collision between particles at the circling zone. The CFD analysis results show when the slope of entering sludge tube is smaller, suction air amount is increased. It is shown that the developed atomizing nozzle is very excellent in the drying performance through pilot test.

Influence of solvent on the nano porous silica aerogels prepared by ambient drying process (상압건조 나노다공성 실리카 에어로젤에 대한 용매의 영향)

  • Ryu, Sung-Wuk;Kim, Sang-Sig;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.371-377
    • /
    • 2006
  • Nano porous, transparent silica aerogels monoliths were prepared under ambient drying (1 atm, $270^{\circ}C$) condition by the combination of sol-gel process and surface modification with subsequent heat treatment. Three kinds of solvent, n-hexane, n-heptane and xylene, were selected in the point view of low surface tension and vapor pressure in order to restrain a formation of cracks during drying. Crack-free silica aerogels with over 93 % of porosity and below $0.14g/cm^3$ of density were obtained by solvent exchange and surface modification under atmosphere condition. Optimum solvent was confirmed n-heptane among these solvents through estimation of FT-IR, TGA, BET and SEM. Modified silica aerogel exhibited a higher porosity and pore size compare to unmodified aerogels. Hydrophobicity was also controled by C-H and H-OH bonding state in the gel structure and heat treatment over $400^{\circ}C$ effects to the hydrophobicity due to oxidation of C-H radicals.

Physicochemical Properties and Antioxidative Activities of White Radish Tea by Different Preparation Methods (가공 방법을 달리한 무차의 이화학적 품질 특성과 항산화 활성)

  • Kim, Min-Ji;Park, Jong-Dae;Sung, Jung-Min
    • Culinary science and hospitality research
    • /
    • v.24 no.1
    • /
    • pp.73-81
    • /
    • 2018
  • The objective of this study was to investigate their physicochemical properties and antioxidant activities of white radish teas such as pH, color value, total polyphenol contents, total flavonoids, DPPH radical scavenging activity, reducing power and sensory evaluation. They were processed by drying(AD), drying and roasting(ADR), steaming and drying(SAD), and steaming, drying, and roasting(SADR). As a result, the pH of ADR, and SADR tended to be significantly lowered and SADR was the lowest at $5.48{\pm}0.14$(p<0.001). Additionally, ADR and SADR were significantly different in color and browning value, compared to AD and SAD. There was no significant difference in reducing sugar content depending on processing methods. The total polyphenol content and total flavonoid content of the teas were significantly increase after roasting. DPPH radical scavenging activity was significantly higher in ADR and SDAR than in AD or SAD by 1.1~1.5 times(p<0.05). Compared with ADR and SADR after roasting, the sensory characteristics of AD and SAD were significantly lower than those of roasted ADAD and SAD, respectively. From the above results, it was concluded that the roasting process is a major process that affects the physicochemical quality characteristics and antioxidant activities.

Development of environmentally sound technology for the wafer drying system (반도체 제조산업중 웨이퍼 건조공정의 청정기술 적용을 위한 연구)

  • Chang, In-Soung;Kim, Jae-Hyung
    • Clean Technology
    • /
    • v.4 no.1
    • /
    • pp.68-75
    • /
    • 1998
  • An innovative wafer drying system was developed using Isopropyl alcohol (IPA) and nitrogen carrier gas in order to replace the commercial conventional drying system which was a non-environmentally friendly system. This system was designed as following ; the IPA evaporation chamber and the process chamber were separated to increase drying efficiency, and the carrier gas with the IPA vapor was delivered into the process chamber. It was investigated that the IPA concentration was the most important factor to operate the system. The optimum concentration was found to be 2.4 ml IPA/N2 1. In addition, the optimum flow rate of the nitrogen gas were maintained more than 60 l/min.

  • PDF

Processing and Quality properties of Chestnut Paste (밤페이스트의 제조와 품질 특성)

  • 문광덕;서영호;김준한;임정호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.3
    • /
    • pp.572-578
    • /
    • 1999
  • This study was conducted to investigate processing condition and characteristics of chestnut paste. The kinds of chestnut powder processed with blanching and drying of raw material were four named RH(not blanched, hot air dried), RF(not blanched, freeze dried), BH(blanched, hot air dried) and BF(blanched, freeze dried). Blanching affected the reduction of drying time in chestnut. Water absorption index of the blanched samples were higher than the nonblanched. Blanching affected the viscosity of pastes when water was added to process paste also, but drying methods did not affected to it. The proper ratio of water to the powder to process paste was 1.3 to 1.5 times in RH and RF, whereas 2.7 times in BH and BF by sensory evaluation. Soluble tannin content of paste was higher in RF and RH paste than BF and BH. Vitamin C content was the highest(88.49mg/100g) in RF paste and reducing sugar content was the highest in RF paste. Hunter's L and a values were the highest in BF and RH pastes, respectively, among the all paste samples. Volatile compounds detected from chestnutpastes were hydrocarbons, alcohols, phenols, ketones. The major volatile compound in all the pastes was 2,6 bis(1,1 dimethylethyl) 4 methyl phenol.

  • PDF

An Experimental Study on the Drying and Curing Characteristics of Conductive metallic ink using Combined IR and Hot Air Type in the Roll-to-Roll System (R2R 공정에서 적외선가열과 열풍을 혼합한 건조방식에서 전도성 금속 잉크의 건조 및 큐어링 공정 특성에 관한 실험적 연구)

  • Kim, Young-Mo;Hong, Seung-Chan;Lee, Jai-Hyo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.73-78
    • /
    • 2010
  • This research is about the drying and curing characteristic of conductivity metallic ink on-line curing device in order to improve the curing time for productivity in RFID Gravure printing. The curing process is carried out to increase the electric conductivity after the metallic ink is printed on the substrate. The metal ink is composed of nano-sized silver or copper particles. In this research, the combined IR and Hot air curing system is used and its results is compared with those of oven, IR and Hot Air type respectively. Generally the curing time in the past is about 3 minutes. But the combined system (IR+Hot Air) in this research shows that curing time is less than 30 seconds. These results is much faster than those of other system. This study can be help to make Roll-to-Roll drying and curing process for mass and continuous production on-line.