• Title/Summary/Keyword: drying period

Search Result 354, Processing Time 0.03 seconds

Fixed Bed Drying of Sugarcane Bagasse Using Solar Energy

  • Hyoung-Woo LEE;Hyun-Ook KIM;Dong-Hoon LEE;Don-Ha CHOI;Seung-Gyu KIM
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.47-57
    • /
    • 2024
  • Solar energy is one of the most promising options for renewable energy and biomass is one of them. One of the main biomass sources, sugarcane bagasse, is produced annually in more than hundreds of nations worldwide exceeding 4.25 billion tons. To dry a 900-mm deep fixed bed of wet sugarcane bagasse, a solar air heater with a collector area of 2 m2 was installed. Between October 10th to 19th in Gwangju, South Korea, a 9-day drying period, the solar collector received a total of 496,145 kJ of solar radiation. During this time, 54.5 kg of water was extracted from 133 kg of wet sugarcane bagasse (average green moisture content of 47.6%w.b.). The estimated net heat from the evaporation of water removed during the dying period accounted for approximately 27% of the total solar radiation on the solar collector.

Drying Characteristics of Strawberry Fruit Leather

  • Lee, Gwi-Hyun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • v.10 no.2
    • /
    • pp.137-145
    • /
    • 2005
  • The effects of air temperature and sample thickness on drying kinetics of strawberry leather were investigated. The mathematical modeling was performed by using three thin-layer dying models. The independent variables were sample thickness (S1 = 1.8, S2 = 2.7, and S3 = 3.6mm) and air temperature (50, 60, 70, and 80$^{\circ}$C). All samples took place in the falling rate period. The values of effective moisture diffusivity, D$_{eff}$ varied from 2.40 to 12.1$^{\times}$10-9m$^{2}$/s depending on drying conditions. The values of activation energy, E$_{a}$ were 35.57, 33.14, and 30.46 KJ/mol for each sample of S1, S2, and S3. The two-term exponential model was found to satisfactorily describe the thin-layer drying kinetics of strawberry leather.

  • PDF

Fan and Heater Management Schemes for Layer Filling and Mixing Drying of Rough Rice with Natural Air by Simulation (시뮬레이션에 의한 벼의 누적혼합 상온통풍건조의 송풍기 및 가열기의 운영방법에 관한 연구)

  • 금동혁;한충수;박춘우
    • Journal of Biosystems Engineering
    • /
    • v.23 no.3
    • /
    • pp.229-244
    • /
    • 1998
  • This study was performed to determine proper fan and heater management schemes for natural air drying of rough rice in round steel bin with stirring device under Korean weather conditions. A computer simulation model was developed to predict moisture content changes, energy requirements, and drymatter losses during drying of rough rice by natural air. Drying test was conducted to validate the simulation model using round steel bin of holding capacity of 300ton at Rice Processing Complex in Jincheon. The bin was filled with rough rice every day and mixing by stirring device. Moisture contents, ambient air temperatures, relative humidities, static pressures in plenum chamber in the bin, airflow rates, and electrical and fuel energy were measured. Relative errors of moisture content changes predicted by the simulation model were below 5ft, and relative errors of final moisture content, final grain weight, required energy ranged from 0.9% to 6%. These not levels indicated that the simulation model can satisfactorily predict the performance factors of natural air drying system such as drying rates and energr consumptions comparing error level of 10% to 15% in other drying simulation models generally used in dryer desists. Twelve different fan and heater management schemes were evaluated using the computer simulation model based on three hourly weather data from Suweon for the period of 1952-1994. The best management schemes were selected comparing the drymatter losses, required drying times, required energy consumptions. Operating fan without heating only when ambient relative humidity was below 85% or 90% appeared to be the most effective method of In operation in favorable drying weather. Under adverse drying climates or to reduce required drying time, operating fan continuously, and heating air with $1.5^{\circ}C$ temperature rise only when ambient relative humidity was over 85% appeared to be the most suitable method.

  • PDF

THE ROLE OF GINSENG DRYING IN THE HARVEST AND POST-HARVEST PRODUCTION SYSTEM FOR AMERICAN GINSENG

  • Bailey W.G.;Dalfsen K.B. van;Guo Y.
    • Proceedings of the Ginseng society Conference
    • /
    • 1993.09a
    • /
    • pp.155-163
    • /
    • 1993
  • An American ginseng(Panax quillquefolium L) industry has emerged in British Columbia, Canada over the past ten years. Interest has grown very rapidly and with this development, attention is now moving away from field production issues and emphasis is being directed to enhancements in ginseng storage, drying and processing. There is a dearth of knowledge on these aspects even though they are crucial to international competitiveness. Enhancement dicatates the application of a systems approach to optimizing the harvest and post - harvest production system(crop digging, pre - washing cold storage. washing, drying and post - drying storage). Research in British Columbia to date has focussed on drying and storage issues and has resulted in the design of an enhanced commercial drying system. The role of dryer management, loading rates, airflow rates and pre - drying cold storage on American ginseng root drying rates and root quality were examined. From the dryer management experiments, there are distinct advantages to size sorting root to yield optimum drying rates. If unsorted root is used, efficiency is increased if the trays are systematically rotated. Loading rate experiments illustrate that increasing rates above those currently used in commercial dryers are possible without any sacrifice in quality. This has significant implications for commercial drying. Pre - drying cold storage is a most significant tool for managing drying operations. Over a period of six weeks, no discernable decrease in quality was found as a consequence of cold storage. Further, the moisture loss and the associated root surface changes(loss of surface soil in storage for example) provide new challenges for root quality management. Continued research and technological innovation will be crucial in addressing the demanding challenges of the future.

  • PDF

Drying Characteristics of Mango Powder according to Foam-Mat Drying Conditions (포말건조 조건에 따른 애플망고 분말의 건조 가공 특성)

  • Hyeonbin Oh;Chae-wan Baek;Taeho Kwak;Hyun-Wook Jang;Ha-Yun Kim;Yong Sik Cho
    • The Korean Journal of Food And Nutrition
    • /
    • v.36 no.6
    • /
    • pp.496-505
    • /
    • 2023
  • This study explored a method to enhance the drying process usability of local mangoes by producing foam-mat dried powder under varying drying temperatures (50, 60, 70℃) and foam thicknesses (3, 6, 9 mm). The drying process period ranged from 60 to 390 minutes based on the set conditions, with higher temperatures and thinner foams accelerating drying. Powder chromaticity (L*,(L*, a*, and b*) demonstrated a declining trend with increasing drying temperature and foam thickness, exhibiting notable variance in chroma values. The water absorption index varied significantly, between 3.08 to 4.24, under different drying conditions, although the water solubility index remained consistent across foam-dried samples. Powder moisture content ranged from 2.53% to 3.83%, with hygroscopicity escalating with temperature and foam thickness. Vitamin C structure was compromised during the hot air drying process, especially at temperatures above 60℃. Electronic nose analysis distinguished foam-dried powder from freeze-dried powder; however, a thicker foam yielded a scent profile closer to that of freeze-dried powder. The findings provide fundamental data on mango foam drying, which is expected to improve processing and storage tech for local mangoes.

Dehydration Kinetics of Rehmannia (Rehmannia glutinosa Liboschitz)

  • Rhim, Jong-Whan;Kim, Ji-Hye;Jeong, Won-Chul
    • Food Science and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.771-777
    • /
    • 2007
  • Sliced and whole root of rehmannia were dehydrated in a laboratory dryer at 40, 60, 80, and $100^{\circ}C$ to evaluate the kinetic parameters for dehydration of rehmannia. The drying curves of both samples were characterized by a falling-rate drying period only. Sliced rehmannia dried 1.1 to 3.1 times faster than whole root of rehmannia depending on drying temperature. Equilibrium moisture content (EMC) of rehmannia samples at the drying temperature tested were 0.069-0.078 g water/g dry solid, which was coincided with the monolayer moisture content (0.06 and 0.07 g water/g dry solid) evaluated from desorption isotherms using GAB (Guggenheim-Anderson-de Boer) model. A logarithmic model for thin layer drying was applied to evaluate the drying time to reach EMC ($t_{EMC}$) and drying constant (k). The effect of temperature on $1/t_{EMC}$ and k was described by the Arrhenius model with activation energy values of 32.56 and 47.14 kJ/mol determined using the former parameter, and 34.27 and 38.26 kJ/mol determined using the latter parameter for sliced and whole root of rehmannia, respectively.

Estimation of Effective Moisture Diffusivity of Rapeseed (Brassica napus L.) (유채 종자의 수본확산계수에 관한 연구)

  • Duc, Le Ahn;Hong, Sang-Jin;Han, Jae-Woong;Keum, Dong-Hyuk
    • Journal of Biosystems Engineering
    • /
    • v.33 no.5
    • /
    • pp.296-302
    • /
    • 2008
  • The effective moisture diffusivity and its dependence on drying temperature during drying of rapeseed were experimentally investigated. The data were recorded from thin layer drying experiments at nine different combinations of drying air temperatures of 40, 50, and $60^{\circ}C$ and the relative humidities of 30, 45, and 60%. The moisture diffusion equation was analyzed using stepwise multiple regression analysis. Effective moisture diffusivities were calculated based on the moisture diffusion equation for a spherical shape using Fick's second law. The effective diffusivities during the drying of rapeseed were $l.72{\times}10^{-11}$, $2.41{\times}10^{-11}$ and $3.31{\times}10^{-11}\;m^2{\cdot}s^{-1}$ at 40, 50 and $60^{\circ}C$, respectively. The activation energy for moisture diffusion during drying was $28.47\;kJ{\cdot}mol^{-1}$. The dependence of moisture diffusivity on temperature was described by an Arrhenius-type equation. Drying occurred in the falling rate period and the internal moisture diffusion phenomenon is the governing physical mechanism of the moisture movement in the particles.

Prediction of Sublimation Drying Time for Carrot in Freeze-Drying (당근의 동결건조에서 승화건조시간 예측연구)

  • Park, Noh-Hyun;Kim, Byung-Sam;Bae, Sin-Chul
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.313-320
    • /
    • 1993
  • A sublimation model of the freeze drying process, which accounted for the removal of free water, was presented and used to study the operation conditions of freeze driers for carrot juice. It was found that the shortest drying time was obtained when the condenser temperature and chamber pressure were kept at heir lowest values and the plate temperature was controlled independently so that the scorch and melting constraints were both held throughout the drying period. The effect of sample thickness on the drying time was significant. Optimal policies were investigated experimentally in laboratory freeze dryer.

  • PDF

A Study on Effects of Air-delivery Rate upon Drying Rough Rice with Unheated Air. (벼의 자연통풍건조에 있어서 통풍량이 건조에 미치는 영향에 관한 연구)

  • 이상우;정창주
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.1
    • /
    • pp.3293-3301
    • /
    • 1974
  • An experimental work was conducted by using a laboratory-made model dryer to investigate the effect of the rate of natural forced-air on the drying rate of rough rice which was deposited in the deep-bed. The dryer consisted of 8 cylinderical containers with grain holding screen at their bottoms, each of which having 30cm in diameter and 15cm in height. The containers were sacked vertically with keeping them air-tight by using paper tape during dryer operation. Two separate layers of containers were operated in the same time to have two replications. The moisture contents of grains within each bins after predetermined period of dryer operation were determined indirectly by measuring the weight of the individual containers. The air-rates were maintained at 6 levels, or 5, 8, 10, 15, 18 and 20 millimenters of static head of water. The roomair conditions during dryer operation were maintained in the range of 10-l5$^{\circ}C$ in temperature and 40-60% in relative humidity. The results of the study are summarized as follows: 1. Drying characteristics of the grains in the bottom layers were approximately the same regardless of airdelivery rates, giving the average drying rate as about 0.35 percent per hour after 40-hour drying period, during which moisture content (w. b.) reduced from 24 percent to about 10 percent. 2. After about 40-hour drying period, the mean drying rates increased from 0.163 percent per hour to 0.263 percent per hour as air-flow rates increased from 5mm to 87.16mm of static head of water. In the same time, the moisture differences of grains between lower and upper layers varied from 12.7 percent at the air rate of 5mm of water head to 7.5 percent at the air-flow rate of 20mn of water head. Thus, the greater the air-flow rate was, the more overall improvement in drying performance was. Additionally, from the result of ineffectiveness of drying grain positioned at 70cm depth or above by the air rate of 5mm of static head of water it may be suggested in practical application that the height of grain deposit would be maintained adequately within the limits of air-rates that may be actually delivered. 3. Drying after layer-turning operation was continued for about 30 hours to test the effectiveness of reducing moisture differences in the thick layers. As a result of this layer-turning operation, moisture distribution through layers approached to narrow ranges, giving the moisture range as about 7 percent at air-flow rate of 5mm head of water, about 3 percent at 10mm head about 2 percent at 15mm head, and less than 1 percent at 20mm head. In addition, from the desirable results that drying rate was rapid in the lower layers and dully in the upper layers, layer-turning operation may be very effective in natural air drying with deep-layer grain deposit, especially when the forced air was kept in low rate. 4. Even though the high rate of air delivery is very desirable for deep-layer natural-air drying of rough rice, it can be happened that the required air delivery rate could not be attained because of limitation of power source available on farms. To give a guide line for the practical application, the power required to perform the drying with the specified air rate was analyzed for different sizes of drying bin and is given in Table (5). If a farmer selects a motor of which size is 1 or {{{{1 { 1} over {2 } }}}} H.P. and air-delivery rate which ranges from 8~10mm of head, the diameter of grain bin may be suggested to choose about 2.4m, also power tiller or other moderate size of prime motor may be recommended when the diameter of grain bin is about 5.0m or more for about 120cm grain deposit.

  • PDF

The Effects of Washing and Drying on the Dimensional Stability of Woven Fabrics with and without Spandex (세탁 및 건조과정에 의한 스판덱스 혼방 직물의 변형 비교)

  • Yun, Changsang;Ko, Yerin;Song, Gyeong Hee;Shin, Hyodam;Park, Chung Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.3
    • /
    • pp.458-467
    • /
    • 2017
  • There is increased interest in clothes dryers and garments made of spandex-blend woven fabrics; however, there is limited information available for the laundering and drying these clothes. This study investigates the effects of washing and drying on shrinkage, skewness, and wrinkle for woven fabrics with and without spandex. When spandex with good elastic recovery was blended, the deformed shape from washing and drying improved skewness and wrinkle by easily returning to its original shape. However, these properties had a negative effect on shrinkage in terms of length and area change. When the influence of clothes maintenance was classified, the drying process had the biggest influence of 58%, followed by spinning-rinsingwashing. Tumble drying, in which the fabric is exposed to mechanical force and heat for a long period, had more negative effects on the dimensional stability than line drying. The spandex blend had the effect of preventing skewness and wrinkle in garments, but it was also shown to accelerate shrinkage by garment maintenance cycles. It was important to control drying in order to reduce shrinkage during the maintenance process; consequently, this had the greatest influence on the dimensional stability of fabrics. Therefore, line drying was more advantageous for spandex-blend fabrics than tumble drying in terms of management for shrinkage, skewness, and wrinkle.