• Title/Summary/Keyword: drying method

Search Result 1,452, Processing Time 0.047 seconds

Development of Continuous Cross-Flow Rice Drying Model (벼의 횡류 연속식 건조 모델 개발)

  • 송대빈;고학균
    • Journal of Biosystems Engineering
    • /
    • v.22 no.3
    • /
    • pp.279-288
    • /
    • 1997
  • This study was worked out to obtain fundamental data needed for developing a continuous type dryer. The drying process in a cross-flow type continuous dryer was expressed as partial differential equations, and a drying simulation model for predicting rice moisture content, rice temperature, drying air absolute humidity, drying air temperature was developed by using the finite difference method. To validate the performance of the drying simulation model, a prototype continuous dryer was constructed in this study. The size of the test dryer was one-tenth to that of a commercial continuous dryer. The difference in the outlet rice moisture content between the predicted values and the measured values was within 0.5%, that of outlet rice temperature was below $3^{\circ}C$, that of drying air temperature in drying bed was within $8^{\circ}C$ and that of relative humidity of outlet drying air was big because of the different measuring point. In addition, a drying simulation model for a actual size continuous dryer with double flow was developed in this study. This drying simulation model included the rice mixing effect in the middle of drying length. The difference of outlet moisture content between the predicted and the measured values showed below 0.5% in this study.

  • PDF

Effects of Osmotic Dehydration on Drying Characteristics of Kiwifruits (키위의 건조특성에 미치는 삼투처리의 영향)

  • 윤광섭;홍주헌
    • Food Science and Preservation
    • /
    • v.6 no.3
    • /
    • pp.319-323
    • /
    • 1999
  • This study was conducted to minimize the deterioration of dried kiwifruit quality. Osmotic dehydration was carried out as pretreatment before drying. After the kiwifruits were pretreated under optimized osmotic dehydration conditions, they were dried by three drying methods(hot air drying, vacuum drying, freeze drying). Hot air drying and vacuum drying were superior to freeze drying in the drying speed. But vacuum and freeze drying preserved more vitamin C than hot air drying. Also, osmotic dehydrated kiwifruit kept better quality than nontreated kiwifruit. Diffusion coefficient which describes moisture transfer, was high in drying process pretreated with osmosis. The changes of vitamin-C followed the second-order reaction rate equation with high RE, respectively.

  • PDF

Nutritional Composition and Antioxidative Activity of Different Parts of Taraxacum coreanum according to Drying Methods (흰민들레의 부위별 건조방법에 따른 영양성분 및 항산화효과 비교)

  • Oh, Hee-Kyung
    • Journal of the Korean Dietetic Association
    • /
    • v.19 no.4
    • /
    • pp.389-399
    • /
    • 2013
  • This study compared the nutritional composition and antioxidative activity of different parts of Taraxacum coreanum (aerial parts and roots) according to different drying methods (natural drying and freeze-drying). There were no significant differences in vitamin C content in roots depending on the drying methods. However, vitamin A (P<0.01), E (P<0.001) and C (P<0.001) content of aerial parts, and vitamin A (P<0.001) and E (P<0.05) content of roots were significantly higher after freeze-drying compared to natural drying. For organic acids, the oxalic acid content of the aerial parts and roots were the highest. The total polyphenol and total flavonoid content in extracts from the aerial parts (P<0.01) and roots (P<0.05) were significantly higher after freeze-drying compared to natural drying. In addition, the total polyphenol and flavonoid content, DPPH radical scavenging activity, and antioxidative index from the natural drying and freeze-drying of Taraxacum coreanum extracts were significantly higher in the aerial parts compared to the roots (P<0.05). These results suggest that the nutritional composition and antioxidative activity of Taraxacum coreanum are higher in the aerial parts compared to the roots, and higher after freeze-drying compared to natural drying. Therefore, the aerial parts of Taraxacum coreanum could be suggested as an antioxidative functional food source.

Simulation of Drying Grain with Solar-Heated Air (태양에너지를 이용한 곡물건조시스템의 시뮬레이션에 관한 연구)

  • 금동혁;김용운
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.65-83
    • /
    • 1979
  • Low-temperature drying systems have been extensively used for drying cereal grain such as shelled corn and wheat. Since the 1973 energy crisis, many researches have been conducted to apply solar energy as supplemental heat to natural air drying systems. However, little research on rough rice drying has been done in this area, especially very little in Korea. In designing a solar drying system, quality loss, airflow requirements, temperature rise of drying air, fan power and energy requirements should be throughly studied. The factors affecting solar drying systems are airflow rate, initial moisture content, the amount of heat added to drying air, fan operation method and the weather conditions. The major objectives of this study were to analyze the effects of the performance factors and determine design parameters such as airflow requirements, optimum bed depth, optimum temperature rise of drying air, fan operation method and collector size. Three hourly observations based on the 4-year weather data in Chuncheon area were used to simulate rough rice drying. The results can be summarized as follows: 1. The results of the statistical analysis indicated that the experimental and predicted values of the temperature rise of the air passing through the collector agreed well. 2. Equilibrium moisture content was affected a little by airflow rate, but affected mainly by the amount of heat added, to drying air. Equilibrium moisture content ranged from 12.2 to 13.2 percent wet basis for the continuous fan operation, from 10.4 to 11.7 percent wet basis for the intermittent fan operation respectively, in range of 1. 6 to 5. 9 degrees Centigrade average temperature rise of drying air. 3. Average moisture content when top layer was dried to 15 percent wet basis ranged from 13.1 to 13.9 percent wet basis for the continuous fan operation, from 11.9 to 13.4 percent wet basis for the intermittent fan operation respectively, in the range of 1.6 to 5.9 degrees Centigrade average temperature rise of drying air and 18 to 24 percent wet basis initial moisture content. The results indicated that grain was overdried with the intermittent fan operation in any range of temperature rise of drying air. Therefore, the continuous fan operation is usually more effective than the intermittent fan operation considering the overdrying. 4. For the continuous fan operation, the average temperature rise of drying air may be limited to 2.2 to 3. 3 degrees Centigrade considering safe storage moisture level of 13.5 to 14 perceut wet basis. 5. Required drying time decrease ranged from 40 to 50 percent each time the airflow rate was doubled and from 3.9 to 4.3 percent approximately for each one degrees Centigrade in average temperature rise of drying air regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on required drying time. 6. Required drying time increase ranged from 18 to 30 percent approximately for each 2 percent increase in initial moisture content regardless of the fan operation methods, in the range of 18 to 24 percent moisture. 7. The intermittent fan operation showed about 36 to 42 percent decrease in required drying time as compared with the continuous fan operation. 8. Drymatter loss decrease ranged from 34 to 46 percent each time the airflow rate was doubled and from 2 to 3 percent approximately for each one degrees Centigrade in average temperature rise of drying air, regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on drymatter loss. 9. Drymatter loss increase ranged from 50 to 78 percent approximately for each 2 percent increase in initial moisture content, in the range of 18 to 24 percent moisture. 10. The intermittent fan operation: showed about 40 to 50 percent increase in drymatter loss as compared with the continuous fan operation and the increasing rate was higher at high level of initial moisture and average temperature rise. 11. Year-to-year weather conditions had a little effect on required drying time and drymatter loss. 12. The equations for estimating time required to dry top layer to 16 and 1536 wet basis and drymatter loss were derived as functions of the performance factors. by the least square method. 13. Minimum airflow rates based on 0.5 percent drymatter loss were estimated. Minimum airflow rates for the intermittent fan operation were approximately 1.5 to 1.8 times as much as compared with the continuous fan operation, but a few differences among year-to-year. 14. Required fan horsepower and energy for the intermittent fan operation were 3. 7 and 1. 5 times respectively as much as compared with the continuous fan operation. 15. The continuous fan operation may be more effective than the intermittent fan operation considering overdrying, fan horsepower requirements, and energy use. 16. A method for estimating the required collection area of flat-plate solar collector using average temperature rise and airflow rate was presented.

  • PDF

Simulation of Drying Grain with Solar-Heated Air (태양에너지를 이용한 곡물건조시스템의 시뮬레이션에 관한 연구)

  • Keum, Dong-Hyuk
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.64-64
    • /
    • 1979
  • Low-temperature drying systems have been extensively used for drying cereal grain such as shelled corn and wheat. Since the 1973 energy crisis, many researches have been conducted to apply solar energy as supplemental heat to natural air drying systems. However, little research on rough rice drying has been done in this area, especially very little in Korea. In designing a solar drying system, quality loss, airflow requirements, temperature rise of drying air, fan power and energy requirements should be throughly studied. The factors affecting solar drying systems are airflow rate, initial moisture content, the amount of heat added to drying air, fan operation method and the weather conditions. The major objectives of this study were to analyze the effects of the performance factors and determine design parameters such as airflow requirements, optimum bed depth, optimum temperature rise of drying air, fan operation method and collector size. Three hourly observations based on the 4-year weather data in Chuncheon area were used to simulate rough rice drying. The results can be summarized as follows: 1. The results of the statistical analysis indicated that the experimental and predicted values of the temperature rise of the air passing through the collector agreed well.2. Equilibrium moisture content was affected a little by airflow rate, but affected mainly by the amount of heat added, to drying air. Equilibrium moisture content ranged from 12.2 to 13.2 percent wet basis for the continuous fan operation, from 10.4 to 11.7 percent wet basis for the intermittent fan operation respectively, in range of 1. 6 to 5. 9 degrees Centigrade average temperature rise of drying air.3. Average moisture content when top layer was dried to 15 percent wet basis ranged from 13.1 to 13.9 percent wet basis for the continuous fan operation, from 11.9 to 13.4 percent wet basis for the intermittent fan operation respectively, in the range of 1.6 to 5.9 degrees Centigrade average temperature rise of drying air and 18 to 24 percent wet basis initial moisture content. The results indicated that grain was overdried with the intermittent fan operation in any range of temperature rise of drying air. Therefore, the continuous fan operation is usually more effective than the intermittent fan operation considering the overdrying.4. For the continuous fan operation, the average temperature rise of drying air may be limited to 2.2 to 3. 3 degrees Centigrade considering safe storage moisture level of 13.5 to 14 perceut wet basis.5. Required drying time decrease ranged from 40 to 50 percent each time the airflow rate was doubled and from 3.9 to 4.3 percent approximately for each one degrees Centigrade in average temperature rise of drying air regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on required drying time.6. Required drying time increase ranged from 18 to 30 percent approximately for each 2 percent increase in initial moisture content regardless of the fan operation methods, in the range of 18 to 24 percent moisture.7. The intermittent fan operation showed about 36 to 42 percent decrease in required drying time as compared with the continuous fan operation.8. Drymatter loss decrease ranged from 34 to 46 percent each time the airflow rate was doubled and from 2 to 3 percent approximately for each one degrees Centigrade in average temperature rise of drying air, regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on drymatter loss. 9. Drymatter loss increase ranged from 50 to 78 percent approximately for each 2 percent increase in initial moisture content, in the range of 18 to 24 percent moisture. 10. The intermittent fan operation: showed about 40 to 50 percent increase in drymatter loss as compared with the continuous fan operation and the increasing rate was higher at high level of initial moisture and average temperature rise.11. Year-to-year weather conditions had a little effect on required drying time and drymatter loss.12. The equations for estimating time required to dry top layer to 16 and 1536 wet basis and drymatter loss were derived as functions of the performance factors. by the least square method.13. Minimum airflow rates based on 0.5 percent drymatter loss were estimated.Minimum airflow rates for the intermittent fan operation were approximately 1.5 to 1.8 times as much as compared with the continuous fan operation, but a few differences among year-to-year.14. Required fan horsepower and energy for the intermittent fan operation were3. 7 and 1. 5 times respectively as much as compared with the continuous fan operation.15. The continuous fan operation may be more effective than the intermittent fan operation considering overdrying, fan horsepower requirements, and energy use.16. A method for estimating the required collection area of flat-plate solar collector using average temperature rise and airflow rate was presented.

Effect of Drying Methods on Longitudinal Liquid Permeability of Korean Pine

  • Lee, Min-Gyoung;Lu, Jianxiong;Jiang, Jiali;Kang, Ho-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.5
    • /
    • pp.49-55
    • /
    • 2008
  • This study was carried to investigate the effects of steaming and four different drying methods on the longitudinal liquid permeability of Korean pine (Pinus koraiensis Sieb.et Zucc.) board. Four drying methods were air drying, conventional kiln drying, microwave-vacuum drying and high temperature drying. Darcy equation was used for calculating the specific permeability of the small sapwood specimens taken from the treated boards while capillary rising method was used for the heartwood specimens. The sapwood specimens were extracted with water and benzene-alcohol solution to examine the mechanism of liquid flow in treated wood. No significant correlation was found between specific permeability and the number of resin canals of the sapwood specimens. Extraction decreased the differences of specific permeabilities of the sapwood specimens between the five treatment methods. The effects of extraction on the longitudinal permeability are different between five treatments. The fluid path in heartwood was observed by dynamic observation method.

Quality Changes in Eleutherococcus senticosus Cortex Processed by Different Pretreatment and Drying Method (전처리 및 건조방법에 따른 가시오갈피생약재의 품질변화)

  • Jeong, Haet-Nim;Lim, Sang-Hyun;Kim, Hee-Yeon;Kim, Kyung-Dae;Park, Yu-Hwa;Ham, Hun-Ju;Lee, Kwang-Jae;Kim, Kyung-Hee;Ahn, Young-Sup
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.2
    • /
    • pp.98-104
    • /
    • 2010
  • Eleuthero(Eleutherococcus senticosus Maxim.) cortex is well known as a herb medicine for tonic. This study was performed to improve the quality of dried E. senticosus cortex. Investigation of quality factor and contents of efficient compounds under different steaming times and drying methods were performed to determine the proper processing and drying conditions of Eleuthero cortex harvested on March in annual stems. The proper steaming time for peeling bark to make high quality Eleuthero cortex took less than 20 mins. Eleutheroside B and E contents among drying methods were significantly different at 5% level DMRT. The $50^{\circ}C$ heat drying was the most advisable condition for drying, when drying and keeping contents of effective compounds.

Feasibility of utilizing oven-drying test to estimate the durability performance of concrete

  • Chen, How-Ji;Tang, Chao-Wei;Peng, Hsien-Sheng
    • Computers and Concrete
    • /
    • v.8 no.4
    • /
    • pp.389-399
    • /
    • 2011
  • The increasing concern for reinforced concrete structure durability has been justifying in many ways in the last few decades. However, there is no perfect durability test method till now. In this research an alternative method, which is based on the cumulative moisture loss percent of the concrete specimens after oven-drying, was proposed to estimate the durability performance of the concrete. Two temperatures were considered for the oven-drying tests: $100^{\circ}C$ and $200^{\circ}C$. Test results showed that oven-drying at $200^{\circ}C$ was obviously an unsuitable procedure to preserve the fragile microstructure of cement-based materials. By contrast, experimental results through oven-drying at $100^{\circ}C$ allowed estimating the moisture loss percent of cement-based materials in a more rational manner. Moreover, the magnitudes of the cumulative moisture loss percent obtained from oven-drying tests at $100^{\circ}C$ for 48 hours have good correlations with the data of other well-known methods, namely, electrical resistance test, water permeability test, and mercury intrusion porosimetry test. This investigation established that regarding the oven-drying test as one of the tests for evaluating the potential durability of concrete is considerably practicable.

Characteristics of the 3rd day of 5th instar silkworm powder: effect of preparation method

  • Jo, You-Young;Kim, SooHyun;Lee, Ji Hae;Kweon, HaeYong;Ju, Wan-Teak;Kim, Hyun-Bok;Kim, Kee-Young;Kim, Seong-Wan;Kim, Su-Bae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.40 no.1
    • /
    • pp.22-27
    • /
    • 2020
  • Silkworm powder was prepared from 3rd day of 5th instar silkworm through various drying technology including freeze drying, hot wind drying, infrared drying, and microwave drying. The shape of silkworm dried was different with the drying methods. Freeze drying and microwave drying silkworm looked its original form, but hot wind drying and infrared drying silkworm looked shriveled and crumpled. The color of silkworm powder freeze-dried changed from yellowish green to hazel with lowering freezing temperature. Heavy metals including Pb, Cd, As, and Hg were lower the food criteria. The results of 1-deoxynojirimycin analysis was shown that BaekOkJam and GoldenSilk silkworm powder was satisfied the criteria of functional food, but YeonNokJam silkworm powder was lower than the criteria. The amino acid composition of silkworm was similar regardless of the frozen temperature in freeze drying process.

Development of an Energy Model of Rice Processing Complex(II) -Simulation Model Development and Analysis of Energy Requirement- (미곡종합처리장의 에너지 모델 개발(II) -시뮬레이션 모델 개발 및 소요 에너지 분석-)

  • 장홍희;장동일;김만수
    • Journal of Biosystems Engineering
    • /
    • v.20 no.3
    • /
    • pp.275-287
    • /
    • 1995
  • The rice processing complex(RPC) consisted of the rice handling, drying, storage, and milling processes. It has been established at 83 locations domestically by April 1994, and 200 of RPC will be built more throughout the country. Therefore, this study has been performed to achieve two objectives as the followings : 1) Development of mathematical models which can assess the requirement of electricity, fuel, and labor for four model systems of rice processing complex. 2) Development of a computer simulation model which produce the improved designs of RPC by the evaluation results of energy requirements of four RPC models. The results from this study are summarized as follows : 1) Mathematical models were developed on the basis of result of mass balance analysis and required power of machines for each process. 2) A computer simulation model was developed, which can produce the improved designs of RPC by the evaluation results of energy requirements. The computer simulation model language was BORLAND $C^{++}$. 3) The results of simulation showed that total energy requirements were ranged from 75.94㎾h/t to 124.30㎾h/t. 4) From the results of computer analysis of energy requirement classified by drying type, it was found that energy requirement of the drying type A{paddy rice (PR) for storage-natural air drying(15%), PR for milling-heated air drying(16%)} were less than that of the drying type B{1 step-natural air drying(PR for storage : 18%, PR for milling : 20%), 2 step-heated air drying(PR for storage : 15%, PR for milling : 16%)}. 5) The energy efficient drying method is that all the incoming rough rice to RPC should be dried by national air drying systems. If it is more than the capacity of national air drying system, the amount of surplus rough rice is recommended to be dried by the heated air drying method.

  • PDF