• Title/Summary/Keyword: drying kinetics

Search Result 33, Processing Time 0.017 seconds

Complexation of Omeprazole with Meglumine and its Stability (오메프라졸과 메글루민의 복합체 형성과 안정성)

  • Lee, Gye-Ju;Kim, Sung-Wook;Do, Ki-Chan;Park, Chong-Bum;Hwang, Sung-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.4
    • /
    • pp.253-263
    • /
    • 1997
  • To investigate the interaction of omeprazole (OMP) and meglumine (MEG), a complex was prepared by freeze-drying method in ammoniacal aqueous medium at room temperature and subjected to IR, DSC, and 1H NMR analysis. In addition, the stability of the complex was tested by accelerated stability analysis, and the dissolution rate of both powder and enteric coated was determined pellet by paddle method. The results are as follows; i) IR, DSC, and $^{1}H$ NMR studies indicate the formation of inclusion complex between OMP and MEG probably by electrostatic forces as $[OMP]\;[MEGH]^+$ form in a stoichiometric ratio (1:1) of OMP : MEG. ii) The dissolution rate of enteric coated OMP-MEG complex pellet in simulated enteric fluid was 90.6% in 10 minutes, which may satisfy the requirement for the regulation of dissolution. iii) OMP-MEG complex were decomposed according to pseudo 1st order kinetics: while the decomposition of OMP showed a rate constant $(k_{25^{\circ}C})$ of $5.13{\times}10^{-4}{\cdot}\;day^{-1}$, a half-life$(t_{1/2})$ of 1,350 days, a shelf-life$(T_{90%})$ 205 days and an activation energy of 23.53 kcal/mole. OMP-MEG complex inhibited a rate $(k_{25})$ of $2.92{\times}10^{-4}{\cdot}\;day^{-1}$, a half-life$(t_{1/2})$ of 2,373 days, a shelf-life $(T_{90%})$ of 306 days and an activation energy of 20.18 kcal/mole. iv) OMP was stabilized markedly by the formation of OMP-MEG complex between OMP and MEG, and the humidity increased the stability of OMP-MEG complex by decreasing the decomposition rate$(k_{50^{\circ}C})$ from $1.27{\times}10^{-2}{\cdot}\;day^{-1}$ at 31% R.H. to $2.54{\times}10^{-2}{\cdot}\;day^{-1}$ at 90% R.H.

  • PDF

The Non-Enzymatic Browning and Shelf-Life of Dried Shrimp during Storage under Fluctuating Temperature Conditions (건조 새우의 변온저장중 갈변 및 Shelf-life)

  • KIM Yong-Ju;KIM Mu-Nam;KANG Moon-Sun;CHO Young-Je;KIM Yuck-Yong;CHUN Soon Sil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.1
    • /
    • pp.7-12
    • /
    • 1994
  • The kinetics of browning reaction of dried shrimp powder samples were investigated during storage. The temperature conditions of the ding process were $25^{\circ}C\;and\;45^{\circ}C$, and the samples were stored at water activity ($a_w$) of 0.33, 0.44, 0.52, 0.65 and temperatures of $35^{\circ}C,\;45^{\circ}C,\;55^{\circ}C$ and temperature fluctuations between $33^{\circ}C\;and\;55^{\circ}C$. When the shrimp was dried at $25^{\circ}C$ the activation energies obtained from the Arrhenius plot ranged from 13.57 to 14.33 kcal/mol. From these energies of activation, the $Q_{10}$ values at $25^{\circ}C$ showed 1.93 to 2.00. In the case of drying at $45^{\circ}C$ the activation energies were $13.12{\sim}13.61\;kcal/mol$ and $Q_{10}$ values were $1.89{\sim}1.93$, respectively. In addition, a storage study under square-wave fluctuating temperature conditions was carried out by varying the shrimp sample temperature between $35^{\circ}C\;and\;55^{\circ}C$ within 7 days regular fluctuation cycle. The data obtained from the fluctuating temperature storage study will be used in the prediction of shelf-lives. The shelf-lives assessed at $25^{\circ}C$ from the accelerated shelf-life tests ranged from 4 days at aw 0.65 to 139 days at aw 0.33.

  • PDF

The Effect of Platelet Derived Growth Factor - BB Loaded Chitosan/Calcium Metaphosphate on Bone Regeneration (혈소판유래성장인자를 함유한 Chitosan/Calcium Metaphosphate의 골조직재생효과에 관한 연구)

  • Lee, Seung-Yeol;Seol, Yang-Jo;Lee, Yong-Moo;Lee, Ju-Yeon;Lee, Seung-Jin;Kim, Suk-Young;Ku, Young;Rhyu, In-Chul;Han, Soo-Boo;Choi, Sang-Mook;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.1
    • /
    • pp.1-23
    • /
    • 2001
  • Chitosan is biodegradable natural polymer that has been demonstrated its ability to improve wound healing, and calcium metaphosphate(CMP) is a unique class of phosphate minerals having a polymeric structure. In this study, chitosan/CMP and platelet derived growth factor(PDGF-BB) loaded chitosan/CMP sponges were developed, and the effect of the sponges on bone regeneration and their possibility as scaffolds for bone formation by three-dimensional osteoblast culture were examined. PDGF-BB loaded chitosan/CMP sponges were prepared by freeze-drying of a mixture of chitosan solution and CMP powder, and soaking in a PDGF-BB solution. Fabricated sponge retained its 3-dimensional porous structure with $100-200\;{\mu}m$ pores. The release kinetics of PDGF-BB loaded onto the sponge were measured in vitro with $^{125}I-labeled$ PDGF-BB. In order to examine their possibility as scaffolds for bone formation, fetal rat calvarial osteoblastic cells were isolated, cultured, and seeded into the sponges. The cell-sponge constructs were cultured for 28 days. Cell proliferation, alkaline phosphatase activity were measured at 1, 7, 14 and 28 days, and histologic examination was performed. In order to examine the effect on the healing of bone defect, the sponges were implanted into rat calvarial defects. Rats were sacrificed 2 and 4 weeks after implantation and histologic and histomorphometrical examination were performed. An effective therapeutic concentration of PDGF-BB following a high initial burst release was maintained throughout the examination period. PDGF-BB loaded chitosan/CMP sponges supported the proliferation of seeded osteoblastic cells as well as their differentiation as indicated by high alkaline phosphatase activities. Histologic findings indicated that seeded osteoblastic cells well attached to sponge matrices and proliferated in a multi-layer fashion. In the experiments of implantation in rat calvarial defects, histologic and histomorphometric examination revealed that chitosan/CMP sponge promoted osseous healing as compared to controls. PDGF-BB loaded chitosan/CMP sponge further echanced bone regeneration. These results suggested that PDGF-BB loaded chitosan/CMP sponge was a feasable scaffolding material to grow osteoblast in a three-dimentional structure for transplantation into a site for bone regeneration.

  • PDF