• Title/Summary/Keyword: drying energy

Search Result 540, Processing Time 0.032 seconds

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2014 (설비공학 분야의 최근 연구 동향: 2014년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.380-394
    • /
    • 2015
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2014. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of heat and mass transfer, cooling and heating, and air-conditioning, the flow inside building rooms, and smoke control on fire. Research issues dealing with duct and pipe were reduced, but flows inside building rooms, and smoke controls were newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for thermal contact resistance measurement of metal interface, a fan coil with an oval-type heat exchanger, fouling characteristics of plate heat exchangers, effect of rib pitch in a two wall divergent channel, semi-empirical analysis in vertical mesoscale tubes, an integrated drying machine, microscale surface wrinkles, brazed plate heat exchangers, numerical analysis in printed circuit heat exchanger. In the area of pool boiling and condensing, non-uniform air flow, PCM applied thermal storage wall system, a new wavy cylindrical shape capsule, and HFC32/HFC152a mixtures on enhanced tubes, were actively studied. In the area of industrial heat exchangers, researches on solar water storage tank, effective design on the inserting part of refrigerator door gasket, impact of different boundary conditions in generating g-function, various construction of SCW type ground heat exchanger and a heat pump for closed cooling water heat recovery were performed. (3) In the field of refrigeration, various studies were carried out in the categories of refrigeration cycle, alternative refrigeration and modelling and controls including energy recoveries from industrial boilers and vehicles, improvement of dehumidification systems, novel defrost systems, fault diagnosis and optimum controls for heat pump systems. It is particularly notable that a substantial number of studies were dedicated for the development of air-conditioning and power recovery systems for electric vehicles in this year. (4) In building mechanical system research fields, seventeen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the evaluation of work noise in tunnel construction and the simulation and development of a light-shelf system. The subjects of building energy were worked on the energy saving of office building applied with window blind and phase change material(PCM), a method of existing building energy simulation using energy audit data, the estimation of thermal consumption unit of apartment building and its case studies, dynamic window performance, a writing method of energy consumption report and energy estimation of apartment building using district heating system. The remained studies were related to the improvement of architectural engineering education system for plant engineering industry, estimating cooling and heating degree days for variable base temperature, a prediction method of underground temperature, the comfort control algorithm of car air conditioner, the smoke control performance evaluation of high-rise building, evaluation of thermal energy systems of bio safety laboratory and a development of measuring device of solar heat gain coefficient of fenestration system.

Methodology effects on determining the energy concentration and the apparent total tract digestibility of components in diets fed to growing pigs

  • Huang, Chengfei;Li, Ping;Ma, Xiaokang;Jaworski, Neil William;Stein, Hans-Henrik;Lai, Changhua;Zhao, Jinbiao;Zhang, Shuai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1315-1324
    • /
    • 2018
  • Objective: An experiment was conducted to investigate the effects of different diet formulations: F1 (Two complicated basal diets containing different crude protein levels plus tested feedstuff) vs F2 (A simple corn soybean meal [SBM] basal diet plus tested feedstuff) combined with total collection (TC) or chromic oxide ($Cr_2O_3$) marker or acid-insoluble ash (AIA) marker method, and freeze-dry or oven-dry (OD) technique on estimation of nutrient digestibility in diets fed to growing pigs. Methods: In F1, twelve barrows were allocated to two $6{\times}4$ Youden Squares. The treatment diets included a high protein basal (HPB) diet, a low protein basal (LPB) diet, a corn diet and a wheat bran (WB) diet formulated based on the HPB diet, and a SBM diet and a rapeseed meal (RSM) diet formulated based on the LPB diet. In F2, eight barrows were allocated to two $4{\times}4$ Latin Squares. The treatment diets included a corn basal diet, a SBM basal diet formulated based on the corn diet, and a WB diet and a RSM diet formulated based on the SBM diet. Results: Concentration of digestible (DE) and metabolizable energy (ME), and the apparent total tract digestibility of gross energy, ash, neutral detergent fibre, and acid detergent fibre determined by $Cr_2O_3$ marker method were greater than those determined by TC and AIA marker methods in HPB, LPB, and RSM diets formulated by F1 and in corn diet formulated by F2 (p<0.05). The DE values in WB and both DE and ME values in SBM and RSM estimated using F1 were greater than those estimated using F2 (p<0.05). Conclusion: From the accuracy aspect, the AIA marker or TC method combined with OD technique is recommended for determining the energy concentration and nutrient digestibility of components in diets fed to growing pigs.

The Gravity Separation of Speiss and Limestone Granules Using Vibrating Zirconia Ball Bed (지르코니아볼층 진동을 이용한 스파이스와 석회석 입자의 비중선별)

  • Yoo, Jae Kyoung;Lee, Minji;Kim, Gyeong Hwan;Yoo, Kyoungkeun
    • Resources Recycling
    • /
    • v.29 no.3
    • /
    • pp.36-42
    • /
    • 2020
  • In the present study, gravity separation of speiss (6.74 g/㎤) and limestone (2.7 g/㎤) was investigated using a vibrating 1 mm-zirconia ball (5.6 g/㎤) bed as a medium. The floating ratio and separation efficiency with increasing the number of spiess and limestone granules were examined by changing the vibration frequency from 18 Hz to 26 Hz. During the vibration, the zirconia balls circulate inside the vessel, and the spiess granules sink with the zirconia balls, but limestone granules remain on the surface of the zirconia ball bed. As the number of particles of spiess and limestone granules increased, it was observed that the granules were congested in the path of the granule sinking, so the rate of particle sinking decreased, and that limestone granules overlapping with the spiess granule also sunk. Therefore, the separation efficiency decreases with increasing the number of granules, but when the vibrational frequency increases, there is no more congestion and the separation efficiency increases. When each of the three particles was added, a separation efficiency of 100% was acheived at 22 Hz, which indicates that a dry gravity separation process that does not require a drying process is possible.

Study on Recovery of Au from Flotation Tailing of Gold (금(金) 浮選(부선) 광미(鑛尾)로부터 금(金)의 회수(回收)에 관한 연구(硏究))

  • Shin, Seung-Han;Kang, Hyun-Ho;Hong, Jong-Won;Lee, Jin-Soo;Park, Je-Hyun;Han, Oh-Hyung
    • Resources Recycling
    • /
    • v.19 no.6
    • /
    • pp.61-69
    • /
    • 2010
  • S.M.C (DSME), only operating gold mine in Korea, is processing about 160 ton/day to recover gold and more than 150 ton/day of tailing is produced. Some portion of the tailings are used as a filler material after drying, but most of them are stored on the tailing dam. As a result of chemical analysis by a fire assay method, it contained Au 1.5~2.0 g/ton and 225~300 g per day of gold is getting discarded. It is urgent to develop a technology to recover and reutilize Au. In the present study, flotation tests were carried out to recovery gold for the tailings. Test results show that products with gold grade 21.31 g/ton(Au grade) and 62.73% (Au recovery) were obtained under the optimal conditions including KAX addition rate 97.2 g/ton, frother AF 65 (0.248 l/ton) and depressant sodium silicate (4 kg/ton), it's possible to recover one of the most valuable metal Au, by re-feeding to rougher flotation.

Effect of boron milling on phase formation and critical current density of MgB2 bulk superconductors

  • Kang, M.O.;Joo, J.;Jun, B.H.;Park, S.D.;Kim, C.S.;Kim, C.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.1
    • /
    • pp.18-24
    • /
    • 2019
  • This study was carried out to investigate the effect of milling of boron (B), which is one of raw materials of $MgB_2$, on the critical current density ($J_c$) of $MgB_2$. B powder used in this study is semi-amorphous B (Pavezyum, Turkey, 97% purity, 1 micron). The size of B powder was reduced by planetary milling using $ZrO_2$ balls (a diameter of 2 mm). The B powder and balls with a ratio of 1:20 were charged in a ceramic jar and then the jar was filled with toluene. The milling time was varied from 0 to 8 h. The milled B powders were mixed with Mg powder in the composition of (Mg+2B), and the powder mixtures were uniaxially pressed at 3 tons. The powder compacts were heat-treated at $700^{\circ}C$ for 1 h in flowing argon gas. Powder X-ray diffraction and FWHM (Full width at half maximum) were used to analyze the phase formation and crystallinity of $MgB_2$. The superconducting transition temperature ($T_c$) and $J_c$ of $MgB_2$ were measured using a magnetic property measurement system (MPMS). It was found that $B_2O_3$ was formed by B milling and the subsequent drying process, and the volume fraction of $B_2O_3$ increased as milling time increased. The $T_c$ of $MgB_2$ decreased with increasing milling time, which was explained in terms of the decreased volume fraction of $MgB_2$, the line broadening of $MgB_2$ peaks and the formation of $B_2O_3$. The $J_c$ at 5 K increased with increasing milling time. The $J_c$ increase is more remarkable at the magnetic field higher than 3 T. The $J_c$ at 5 K and 4 T was the highest as $4.37{\times}10^4A/cm^2$ when milling time was 2 h. The $J_c$ at 20 K also increased with increasing milling time. However, The $J_c$ of the samples with the prolonged milling for 6 and 8 h were lower than that of the non-milled sample.

A Devolatilization Model of Woody Biomass Particle in a Fluidized Bed Reactor (유동층 반응기에서의 목질계 바이오매스 입자의 탈휘발 예측 모델)

  • Kim, Kwang-Su;Leckner, Bo;Lee, Jeong-Woo;Lee, Uen-Do;Choi, Young-Tai
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.850-859
    • /
    • 2012
  • Devolatilization is an important mechanism in the gasification and pyrolysis of woody biomass, and has to be accordingly considered in designing a gasifier. In order to describe the devolatilization process of wood particle, there have been proposed a number of empirical correlations based on experimental data. However, the correlations are limited to apply for various reaction conditions due to the complex nature of wood devolatilization. In this study, a simple model was developed for predicting the devolatilization of a wood particle in a fluidized bed reactor. The model considered the drying, shrinkage and heat generation of intra-particle for a spherical biomass. The influence of various parameters such as size, initial moisture content, heat transfer coefficient, kinetic model and temperature, was investigated. The devolatilization time linearly increased with increasing initial moisture content and size of a wood particle, whereas decreases with reaction temperature. There is no significant change of results when the external heat transfer coefficient is over 300 $W/m^2K$, and smaller particles are more sensitive to the outer heat transfer coefficient. Predicted results from the model show a similar tendency with the experimental data from literatures within a deviation of 10%.

Assessment of Carbon Emission for Quantification of Environmental Load on Structural Glued Laminated Timber in Korea (국산 구조용 집성재의 환경부하 정량화를 위한 온실가스 배출량 분석)

  • Chang, Yoon-Seong;Kim, Sejong;Son, Whi-Lim;Lee, Sang-Joon;Shim, Kug-Bo;Yeo, Hwanmyeong;Kim, Kwang-Mo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.449-456
    • /
    • 2016
  • This study was aimed to quantify the amount of carbon dioxide emissions and to suggest suitable plans which consider the carbon emission reduction in the manufacturing process of the domestic structural glued laminated timber. Field investigation on two glued laminated timber manufacturers was conducted to find out material flow input values such as raw materials, transportation, manufacturing process, and energy consumption during manufacturing process. Based on the collected data and the relevant literatures about life cycle inventory (LCI), the amount of carbon dioxide emission per unit volume was quantified. Results show that the carbon dioxide emissions for sawing, drying and laminating process are 31.0, 109.0, 94.2 kg $CO_2eq./m^3$, respectively. These results show 13% lesser amount of total carbon dioxide emissions compared with the imported glued laminated timber in Korea. Furthermore, it was decreased about 37% when the fossil fuel would be replaced with biomass fuel in drying process. Findings from this study is effectively used as the basic data on the life cycle assessment of wooden building.

Effects of Operating Conditions on Adsorption and Desorption of Benzene in TSA Process Using Activated Carbon and Zeolite 13X (활성탄과 제올라이트 13X 충진탑을 사용한 TSA 공정에서 조업조건이 벤젠의 흡착 및 탈착에 미치는 영향)

  • Jung, Min-Young;Suh, Sung-Sup
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.594-603
    • /
    • 2018
  • The effects of operating conditions such as benzene concentration, nitrogen flow rate, steam flow rate, and bed temperature on TSA process were experimentally investigated as a potential VOC removal technology using two kinds of beds packed with activated carbon and zeolite 13X. The TSA cycle studied was composed of the adsorption step, steam desorption step, and drying and cooling step. At 2% benzene concentration, the total adsorption amounts of zeolite 13X and activated carbon were 4.44 g and 3.65 g, respectively. Since the zeolite 13X has a larger packing density than that of the activated carbon, the larger benzene amount could be adsorbed in a single cycle. Increasing the water vapor flow rate to 75 g/hr at 2% benzene concentration reduced the desorption time from 1 hr to a maximum of 33 min. If the desorption time is shortened, the drying and cooling step period can be relatively increased. Accordingly, the steam removal and bed cooling could be sufficiently performed. The desorption amounts increased with the increase of the bed temperature. However, the energy consumption increased while the desorption amount was almost constant above $150^{\circ}C$. In the continuous cycle process, when the amount of remained benzene at the completion of the regeneration step increased, it might cause a decrease in the working capacity of the adsorbent. The continuous cycle process experiment for zeolite 13X showed that the amount of remained benzene at the end of regeneration step maintained a constant value after the fourth cycle.

Preparation Condition and Product Quality of Precooked Redbean Porridge (즉석팥죽 제조를 위한 가공조건 및 제품의 품질)

  • Kim, Chong-Tai;Kim, Bok-Nam
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.305-309
    • /
    • 1994
  • Precooked powder of redbean porridge (RP) was prepared by the series of process extrusion, drying, milling and blending with a mixture of whole redbean flour and corn starch and others. The optimum process and quality of products for RP were investigated. After extrusion under the moisture content 24 to 26%, twin screw speed 350 rpm, extrusion temperature 150 to $155^{\circ}C$ and feed rate 60 kg/hr, the product had a higher quality with its natural redbean flavor/color. During the extrusion process, extrusion temperature and specific mechanical energy increased from 150 to $198^{\circ}C$ and from 134 to 144 kwh/ton respectively, as the amount of addition water decreased from 6 to 2 kg/hr. By the hot air drying of redbean extrudate (RE). it could be dried below to 4% moisture content, of which level considered as an optimal moisture content for anti-caking of the powdered product, at $80^{\circ}C$ for 4hrs and at $100^{\circ}C$ for 1.5 hrs respectively. In the sieve analysis of extrudate powder, when the product milled through a mesh size of 0.5 mm or 1.0 mm, about 80% or 65% of the feed was passed a 65 mesh screen respectively. Moisture absorption of final blended products was formed a cake under 100% of relative humidity after 13 hrs of storage. As the amount of RE powder reduced, the flavor score of products decreased by sensory evaluation of products prepared by the different ratio of RE powder, corn starch and sugar.

  • PDF

Low Temperature Preparation of Transparent Glass-Ceramic Using Metal-Alkoxides (1) Synthesis and Properties of Porous Monolithic Gel in Li2O·1.7Al2O3·8.6SiO2 (금속 알콕시드를 이용한 투명 결정화유리의 저온 합성 (1) Li2O·1.7Al2O3·8.6SiO2 다공성 겔체의 합성)

  • Chun, Kyung-Soo;Tak, Joong-Jae
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.568-574
    • /
    • 2007
  • Crack-free dried gel monoliths of the composition $Li_2O1{\cdot}7Al_2O_3{\cdot}8.6SiO_2$ have been prepared as a precursor of transparent glass-ceramic by the hydrolysis and polycondensation of mixed metal alkoxides in solutions containing N,N-dimethylformamide as the drying control chemical additive, alcohols, and water. It was investigated that activation energy for gelation according to the variation of water concentration ranged from 13 to 14 kcal/mol. Only when the amount of water for gelation was 3 times higher than the stoichiometric amount, monolithic dry gels were successfully prepared after drying at $70{\sim}75^{\circ}C$ and at a rate of 0.1~0.3%/h. The specific surface area, the pore volume, the average pore diameters of dried gel at $180^{\circ}C$ were about $239.40m^2/g$, 0.001~0.03 mL/g, and $145.62{\AA}$, respectively. It showed that the dried monolithic gel had a porous body. The DTA curve had the first exothermic peak around $800^{\circ}C$ and the 2nd peak around $980^{\circ}C$, which may correspond to crystallization of the gel.