• Title/Summary/Keyword: drying curve

Search Result 108, Processing Time 0.02 seconds

Experimental investigation on loading collapse curve of unsaturated soils under wetting and drying processes

  • Uchaipichat, Anuchit
    • Geomechanics and Engineering
    • /
    • v.2 no.3
    • /
    • pp.203-211
    • /
    • 2010
  • An experimental program of isotropic loading tests on a compacted kaolin using a conventional triaxial equipment modified for testing unsaturated soils was perform to investigate a loading collapse curve of unsaturated soils along wetting and drying paths. The test data are presented in terms of effective stress on a range of constant suction. The suction hardening behavior was observed for both wetted and dried samples. With the use of an appropriate effective stress parameter, the unique relationship for loading collapse curve for wetting and drying processes was obtained.

Effects of the Low Temperature Vacuum Drying Process on Drying Curve and Physico-Chemical Properties of Astringent Persimmons (저온진공건조 공정에 의한 떫은 감의 건조 및 품질 특성)

  • Hur, Sang-Sun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.58-66
    • /
    • 2016
  • This study was performed to investigate drying characteristics and quality properties of dried persimmon with vacuum drying process. Drying characteristic curve of the dried persimmon showed that the constant rate drying period and falling rate drying period exist definitely. $_{\circ}Brix$, sugar content and hardness value of the dried persimmon increased as the vacuum pressure and heating temperature increased, but L value of the dried persimmon lower. The results indicated that the optimal conditions were at vacuum pressure of 40~50kPa abs., heating temperature of $30^{\circ}C$ and drying time of 3~4days.

Comparative Study on Unsaturated Characteristic Curves of Boeun Granite Weathered Soil during Drying and Wetting Paths (건조 및 습윤과정에서 보은 화강암 풍화토의 불포화특성곡선 비교)

  • Song, Young-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.7
    • /
    • pp.15-24
    • /
    • 2016
  • To investigate the unsaturated characteristics of the Boeun granite weathered soil, matric suction and volumetric water content were measured in both drying and wetting paths using Automated Soil-Water Characteristics Curve Apparatus. Based on the measured results, Soil-Water Characteristics Curve was estimated by van Genuchten (1980) model. The relationship between effective degree of saturation and matric suction showed the non-linear curve with S-shape and the hysteresis phenomenon occurred during drying and wetting paths. Suction Stress Characteristics Curve was estimated by the Lu and Likos (2006) model. The suction stress in drying path was constantly maintained and that in wetting path tended to increase when the effective degree of saturation was low. But the suction stress in drying path was larger than that in wetting path at the same degree of saturation when the effective degree of saturation became larger. Meanwhile, Hydraulic Conductivity Function was evaluated by the van Genuchten (1980) model which is one of the parameter estimation methods. The unsaturated hydraulic conductivity decreased with increasing the matric suction, and the decreasing velocity regarding to the matric suction in drying path was larger than that in wetting path.

Landslide Analysis Using the Wetting-Drying Process-Based Soil-Water Characteristic Curve and Field Monitoring Data (현장 함수비 모니터링과 습윤-건조 함수특성곡선을 이용한 산사태 취약성 분석)

  • Lee, Seong-Cheol;Hong, Moon-Hyun;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.5
    • /
    • pp.13-26
    • /
    • 2023
  • This study examined the soil-water characteristic curve (SWCC), considering the volume change, using wetting curves on the field monitoring data of a wireless sensor network. Special attention was given to evaluating the landslide vulnerability by deriving a matric suction suitable for the actual site during the wetting process. Laboratory drying SWCC and shrinkage laboratory tests were used to perform the combined analysis of landslide and debris flow. The results showed that the safety factor of the wetting curve, considering the volume change of soil, was lower than that of the drying curve. As a result of numerical analyses of the debris flow simulation, more debris flow occurred in the wetting curve than in the drying curve. It was also found that the landslide analysis with the drying curve tends to overestimate the actual safety factor with the in situ wetting curve. Finally, it is confirmed that calculating the matric suction through SWCC considering the volume change is more appropriate and reasonable for the field landslide analysis.

Effect of Air Circulation Velocity on the Rate of Lumber Drying in a Small Compartment Wood Drying Kiln (소형 목재인공건조실에 있어서 공기순환속도가 목재건조율에 미치는 영향)

  • Chung, Byung-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.5-7
    • /
    • 1974
  • 1. This study indicates that above the fiber saturation point the drying rate can be increased with increasing the velocity of the air circutation, i.e., the drying rate of sample boards is proportional to the air velocity, but below the fiber saturation point, the effect of the velocity of air circulation is very low as shown in Figs. 1 and 2. 2. Under the controlled temperature and humidity in the kiln, the more the sample boards have moisture, the higher drying rate of it can be obtained. In other words, this means that even though in the case of drying various moisture content of wood, at the final drying stage, approximately the same percentage of moisture content of wood can be secured by employing the higher velocity of air circulation. 3. This study shows that the rate of drying in kiln changes distinctly at the fiber saturation point, i, e., above the fiber saturation point, the drying curve shows concave aginst the X axsis, but below the fiber saturation point, in the range from 30 percent of moisture content to 20 percent of moisture content, the curve shows convex as shown in Fig. 3. As the drying progresses, however, the drying curve shows concave again below 20 percent of moisture content. This means that inflection point of drying curve may be located clearly at the fiber saturation point, i.e., 30 percent of moisture content. As mentioned above, the 30 percent of moisture content of wood at which the inflectional point appears can be recognized as a critical point, i. e., the fiber saturation point at which all free water was removed from wood. The existence of inflectional point indicates that the evaporation of hygroscopic water in a cell wall is more difficult than the evaporation of free water in a cell cavity and the minor space of cell wall. The convex curve in the range of moisture content from 30 percent to 20 percent means that the evaporation of capillary condensed water has a tendency of the same rates of drying approximately, but as approaching to the 20 percent of moisture, the transfusion of moisture from wood becomes difficult because of having less moisture in cell wall. Below 20 percent of moisture content, the drying curve shows concave again, which means that it is difficult to remove the moisture located nearer to the surface of cellulose molecules and the surface bound water. These relations were revealed in Fig. 4. In comparison AC curve which does not have the two inflection points with BD curve which has two inflection points, i.e., Band D, they are mentioned already, by existence of the inflection points, the curve BD shows that the change of drying rate in the interval from 20 percent of moisture content to 30 percent of moisture content is not greater than in the case of the curve AC in the same interval. At the inflection point of 30 percent of moisture content, it can be noticed that the changing of the drying rate is very conspicuous. This phenomenon also can be recognized, as it is noticed by the Fig. 3, the drying rate from green to 30 percent of moisture content is very great. But the inclination of the curve is very slow from 30 percent of moisture content to 20 percent of moisture content, i.e., the inclination of the curve becomes almost horizontal lines. Acknowledgments Gratitude is expressed to Fred E. Dickinson, Professor of 'Wood Technology, School of Natural Resources, University of Michigan, USA for his suggestion to carry out this study.

  • PDF

A hysteresis model for soil-water characteristic curve based on dynamic contact angle theory

  • Liu, Yan;Li, Xu
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.107-116
    • /
    • 2022
  • The steady state of unsaturated soil takes a long time to achieve. The soil seepage behaviours and hydraulic properties depend highly on the wetting/drying rate. It is observed that the soil-water characteristic curve (SWCC) is dependent on the wetting/drying rate, which is known as the dynamic effect. The dynamic effect apparently influences the scanning curves and will substantially affect the seepage behavior. However, the previous models commonly ignore the dynamic effect and cannot quantitatively describe the hysteresis scanning loops under dynamic conditions. In this study, a dynamic hysteresis model for SWCC is proposed considering the dynamic change of contact angle and the moving of the contact line. The drying contact angle under dynamic condition is smaller than that under static condition, while the wetting contact angle under dynamic condition is larger than that under static condition. The dynamic contact angle is expressed as a function of the saturation rate according to the Laplace equation. The model is given by a differential equation, in which the slope of the scanning curve is related to the slope of the boundary curve by means of contact angle. Empirical models can simulate the boundary curves. Given the two boundary curves, the scanning curve can be well predicted. In this model, only two parameters are introduced to describe the dynamic effect. They can be easily obtained from the experiment, which facilitates the calibration of the model. The proposed model is verified by the experimental data recorded in the literature and is proved to be more convenient and effective.

Drying Characteristics of Large Western Redcedar Timber During Radio Frequency/Vacuum Drying (웨스턴 레드시더 큰 정각재(正角材)의 고주파 진공 건조 특성)

  • Jung, Hee-Suk;Avramidis, Stavros;Cai, Liping
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.1-8
    • /
    • 1998
  • Western redcedar timber, 26 by 26cm in cross section and by 200cm long, was dried in a laboratory radio-frequency/vacuum kiln under 65torr of ambient pressure and a fixed frequency of 6.78MHz for the potential rapidly dry large timber. All process data were collected and saved in a computer through a data acquisition system. The temperature in the middle of timber was higher than temperature at the quarter point of timber length and thickness. Temperature gradients developed in the longitudinal and transverse direction of timber. The pressure in the middle of timber was higher than pressure at the quarter point of timber length. The pressure in the middle of timber was lower in the early stage of drying, and higher in the latter stage of drying than pressure at the quarter point of timber thickness. Power density was very highest during heating period and then gradually decreased. The drying curve was approximately linear and the total drying time was 27 hours from an initial moisture content(MC) of 48.6 percent to a final Me of 19.2 percent with only a few mild internal checks in the middle location of timber.

  • PDF

The Convective Drying Characteristics of garlic(Allium sativum L.) (마늘의 열풍건조 특성)

  • Jeong, Sin-Gyo;Gang, Jun-Su;Choe, Jong-Uk
    • Food Science and Preservation
    • /
    • v.2 no.1
    • /
    • pp.155-161
    • /
    • 1995
  • We examined the drying characteristics and the drying rate model equation of garlic(allium sativum L.) using computer aided convective drying. The drying chanacteristic curve of garlic divided into constant rate drying period and 2 stage of falling rate drying period. The drying rate was fairly affected by hot air temperatures during the total drying period, but air flow rates has nearly no effect on the drying rate except initial drying period. Of the several model equation, r2 values of page model equation was the highest, and the estimated drying profiles were comparatively coincided with the observed drying profiles. Page model equation was suitable to predict the drying rate and moisture content during drying of sliced garlic.

  • PDF

Changes in Quality of Soybean Curd Residue as Affected by Different Drying Methods (건조방법에 따른 비지의 품질변화)

  • 김동수;설명훈;김현대
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.25 no.3
    • /
    • pp.453-459
    • /
    • 1996
  • This study was carried out to determine the changes in quality during the drying process and the optimum drying condition for utilizing soybean curd residue. The quality criteria for soybean curd residue were acid value, peroxide value, fatty acid composition and microbial concentration. The acid values of soybean curd residue were 7.5, 4.5 and 5.9 KOH mg/g upon 12 hour drying with open-air sun, ambient-air blast and warm-air blast, respectively. The numbers of total aerobic bacteria and molds increased remarkably during drying with open-air sunlight, ambient-air blast and warm-air blast except for hot air blast. Among different drying methods, the hot air blast drying(1kg of sample) was the most effective methods, which completed in three hours. Also, the drying method demonstrated a typical drying curve ; settling down, constant rate drying and falling rate drying period were shown within one hour, from one and three hours and after three hours, respectively. Moreover, there was significant variation in the constant drying period for the quality of soybean curd residue.

  • PDF

Drying Characteristics of Korean-type Rehmannia (Jiwhang) Noodle

  • Rhim, Jong-Whan
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.202-206
    • /
    • 2009
  • Drying characteristics of fresh Korean-type rehmannia (jiwhang) noodle was investigated to determine drying kinetic parameters under the experimental conditions of 5 temperatures (30, 40, 60, 80, and $90^{\circ}C$). Drying curve of the noodle showed a biphasic pattern of decrease in drying rate with initial rapid drying followed by slow dehydration as the progress in drying. In all drying conditions, only falling drying rate period was observed and the drying rate of the noodle was greatly influenced by the drying temperature. The effective diffusion coefficients ($D_{eff}$) were determined by the diffusion model and their temperature dependency was determined using an Arrhenius equation. The activation energy ($E_a$) values for the drying of the noodle were 19.94 and 21.09 kJ/mol at the initial and the latter stage of dehydration, which were comparable to those of pasta or Japanese udong dehydration.