• Title/Summary/Keyword: dry sliding wear

Search Result 140, Processing Time 0.026 seconds

Tribological Behavior of Electro-pressure Sintered Cobalt-Iron, Cobalt-Nickel, and Cobalt-Iron-Nickel Compacts

  • Kim, Yong-Suk;Kwon, Yong-Jin;Kim, Tai-Woong
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1124-1125
    • /
    • 2006
  • Dry sliding wear behavior of electro-pressure sintered Co-Fe, Co-Ni and Co-Fe-Ni compacts was investigated. Pin-on-disk wear tests were performed on the sintered compacts disk specimens against alumina $(Al_2O_3)$ and silica $(SiO_2)$ ball counterparts at various loads ranging from 3N to 12N. Two sliding speeds of 0.1m/sec and 0.2m/sec and a fixed sliding distance of 1,000m were employed. Worn surfaces and cross sections of them were examined by a scanning electron microscopy, and wear mechanism of the compacts was investigated. Effects of the oxide layer that was formed on wearing surface of the compacts on the wear were also studied.

  • PDF

Sliding Wear and Friction Behavior of Electro-Pressure Sintered Co-Fe and Co-Ni Compacts (통전가압 소결된 Co-Fe, Co-Ni 소결체의 미끄럼 마찰 및 마멸거동)

  • Kwon Yong Jin;Kim Tai-Woung;Kim Yong-Suk
    • Journal of Powder Materials
    • /
    • v.11 no.6 s.47
    • /
    • pp.451-461
    • /
    • 2004
  • Dry sliding wear behavior of electro-pressure sintered Co-Fe and Co-Ni compacts was investigated. Pin-on-disk wear tests were performed on the sintered Co-Fe, Co-Ni disks against alumina $(Al_2O_3)$ and silica $(SiO_2)$ balls at various loads ranging from 3N to 12N. A constant sliding speed of 0.1m/sec was employed. Wear rate was calculated by dividing the weight loss of a specimen by the measured specific gravity and sliding dis-tance. Worn surfaces and cross-sections of the specimens were examined using an SEM and EDS to investigate wear mechanism of the compacts. The wear behavior of the compacts were discussed as a function of their com-position. Effects of mechancial properties of the compact as well as oxide layers formed on wearing surface on the wear were also discussed.

Friction and Wear of Ceramic-Steel Pairs in Boundary-Lubricated and Unlubricated Line-Contact Sliding (경계윤활 및 무윤활 상태에서 선접촉을 하는 세라믹과 강의 마찰과 마멸 특성)

  • 이영제;김영호;장선태
    • Tribology and Lubricants
    • /
    • v.12 no.3
    • /
    • pp.12-25
    • /
    • 1996
  • The friction and wear behaviors of ceramics against steels with lubricants were investigated and compared with those observed in air. Lubrications wbre done by a water and a commercial engine oil as received. The investigated ceramics were $Al_{2}O_{3}$, SiC, and $Si_{3}N_{4}$. Steels with 0.2 wt.% C were heat treated to obtain tempered structure. A cylinder-on-plate tribometer with rotated sliding motion was used to carry out the experiments. In the experiments reported here, the ranges of different testing speeds and loads were used. It was found that the friction and wear characteristics of tested pairs were significantly influenced by environments. In water and oil environments the wear of ceramics was reduced from 10$^{-6}$ g/s down to 10$^{-8}$ g/s in dry sliding at the same values of the frictional power which are the products of the friction coefficient, the load and the sliding speed. SiC showed excellent wear resistant behavior in water sliding, which was the lowest among tested ceramics, but it was, very poor in oils. In case of $Si_{3}N_{4}$, the wear rates were very low under oil environment, but the highest in water. The wear rates of $Al_{2}O_{3}$ were very low in both lubricating conditions at low values of the frictional power, but high at high values of the frictional power.

Effect of Heat Treatment Conditions on the Microstructure and Wear Behavior of Ni-based Self-flux Alloy Coatings (니켈기 자융성 합금 코팅층의 미세구조 및 마모거동에 미치는 후열처리 조건의 영향)

  • Kim, K.T.;Oh, M.S.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.121-126
    • /
    • 2007
  • This study aims at investigating the effect of heat treatment conditions on the dry sliding wear behavior of thermally sprayed Ni-based self-flux alloy coatings. Ni-based self-flux alloy powders were sprayed onto a carbon steel substrate and then heat-treated at 700, 800, 900 and $1000^{\circ}C$ for 30 minutes in a vacuum furnace. Dry sliding wear tests were performed using sliding speed of 0.4 m/s and applied load of 6 N. AISI 52100 ball(diameter 8 mm) was used as counterparts. Microstructure and wear behavior of both as-sprayed and heat-treated Ni-based self-flux alloy coatings were studied using a scanning electron microscope(SEM), energy dispersive X-ray spectroscopy(EDX), electron probe micro-analysis(EPMA) and X-ray diffraction(XRD). It was revealed that microstructure and wear behavior of thermally sprayed Ni-based self-flux alloy coatings were much influenced by heat treatment conditions.

  • PDF

Tribological Behavior of Thin PMMA (Poly Methyl Methacrylate) Coating Layers (PMMA(Poly Methyl Methacrylate) 박막 코팅 층의 마찰 및 마멸 거동)

  • Kang S. H;Kim Y. S
    • Transactions of Materials Processing
    • /
    • v.13 no.8
    • /
    • pp.716-722
    • /
    • 2004
  • Effects of sliding speed, applied load, and thickness of PMMA (Poly Methyl Methacrylate) coating layers on their dry sliding frictional and wear behavior were investigated. Sliding wear tests were carried out using a pin-on-disk wear tester. The PMMA layer was coated on Si wafer by a spin coating process with two different thicknesses, $1.5\mu\textrm{m}$ and $0.8\mu\textrm{m}$. AISI 52100 bearing steel balls were used as a counterpart of the PMMA coating during the wear. Normal applied load and sliding speed were varied. Wear mechanisms of the coatings were investigated by examining worn surfaces using an SEM. Friction coefficient of the coatings decreased with the increase of the applied load. Both adhesion and deformation of the coating determined the coefficient. The thicker PMMA layer with the thickness of $1.5mutextrm{m}$ showed lower friction coefficient than the thinner layer under most test conditions. Effects of sliding speed and applied load on the frictional behavior were varied depending on the thickness of the coating layer.

Sliding Wear Behavior of Plasma-Sprayed $Al_2$O$_3$-TiO$_2$ Coating against Cemented Carbide (Al$_2$O$_3$-TiO$_2$ 플라즈마 세라믹 코팅과 초경합금간의 미끄럼 마멸특성)

  • 이병섭;채영훈;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.313-318
    • /
    • 2001
  • The sliding wear behavior of Plasma-Sprayed Al$_2$O$_3$-TiO$_2$ Coating against Cemented Carbide were Investigated using a pin on disk type tester. The experiment was conducted using Al$_2$O$_3$-TiO$_2$ Coaling as pin material and Cemented Carbide as disk material and different operating conditions, at room temperature under a dry conditions. The results showed that the type B(250kw power) appeared average wear rate Is lowed than type A(80kw power). The specific wear rate of Specimen A1 Increased with normal load. But The specific wear rate of Specimen B1 decreased with normal load. Average wear rate of specimen A3, B3 are lowed than other but the sliding wear mechanism of edge were rough.

  • PDF

The Dry Sliding Wear Properties of $SiC_w$ and $SiC_p$ Reinforced Bronze Matrix Composites (무윤활 미끄럼 마찰하에서 SiC 휘스커 및 입자강화 청동기지 복합재의 마모특성)

  • 이상로;허무영
    • Tribology and Lubricants
    • /
    • v.9 no.2
    • /
    • pp.49-55
    • /
    • 1993
  • The dry sliding wear properties of the sintered Cu-10 wt%Sn bronze alloys reinforced with $SiC_w$ and $SiC_p$ were investigated by a pin-on-disc wear testing machine. The worn surfaces and the cross sections of the wear specimens and the wear debris were observed by SEM to study the effect of the variation of the ceramic phase contents in the composite and the wear condition on the wear behaviors. The wear of bronze matrix was dominated by the adhesive wear. The transition from mild to severe wear was found in the bronze matrix specimens at the applied load higher than 20N where the surface delamination caused the severe wear. The addition of $SiC_w$ and $SiC_p$ reinforcements in the romposites was proved to reduce the wear rate by the matrix strengthening at the applied load higher than 20N. SiC whiskers having a large length to diameter ratio which hold the deformed matrix were effective to hinder the crack propagation near the worn surface. Thus the maximum wear resistance was obtained in the composite reinforced by $SiC_w$ at the higher applied load.

Study on the Wear Characteristics of Gray Cast Iron under Dry Rolling Condition (건식조건하(乾式條件下)에서 회주철(灰鑄鐵)의 로링마모(磨耗)에 관(關)한 연구(硏究))

  • Choi, Chang-Ock;Kim, Dong-Yun
    • Journal of Korea Foundry Society
    • /
    • v.3 no.2
    • /
    • pp.92-99
    • /
    • 1983
  • This study has been carried out to investigate into the difference of rolling life and rolling wear characteristics for various gray cast iron under unlubricated dry rolling condition by amsler type wear test with 9.09% sliding.The results obtained from this study are summerized as follows: 1) It has been found that the amount of rolling wear id decreased when tensile strength and hardness are low, and then the rolling life up to generation of abnormal wear is conspicuously increased. 2) At the given condition the amount of rolling wear has been found to decrease as carbon equivalent of gray cast iron increases and resistance of crack propagation is an important factor on improvement of wear characteristics. 3) The amount of rolling wear is increased with increasing rolling revolution and wear of gray cast iron under dry rolling condition is characterized by three modes; initial wear, stationary wear and abnormal wear. 4) It has been found that the amount of rolling wear is increased with increasing maximum compressive stress and extremely increased when maximum compressive stress is over 59.1kg.f/mm.

  • PDF

Effect of load on the wear and friction characteristics of a carbon fiber composites (탄소 섬유 복합재의 마찰 및 마모 특성에 미치는 하중 효과)

  • Koh, Sung-Wi;Yang, Byeong-Chun;Kim, Hyung-Jin;Kim, Jae-Dong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.4
    • /
    • pp.344-350
    • /
    • 2004
  • This is the study on dry sliding wear behavior of unidirectional carbon fiber reinforced epoxy matrix composite at ambient temperature. The wear rates and friction coefficients against the stainless steel counterpart specularly processed were experimentally determined and the resulting wear mechanisms were microscopically observed. Three principal sliding directions relative to the dominant fiber orientation in the composite wear selected. When sliding took place against smooth and hard counterpart, the highest were resistance and the lowest friction coefficient were observed in the antiparallel direction. When the velocity between the composite and the counterpart went up, the wear rate increased. The fiber destruction and cracking caused fiber bending on the contact surface, which was discovered to be dominant wear mechanism.

Sliding Wear Behavior of Plasma Sprayed Zirconia Coatingagainst Silicon Carbide Ceramic Ball

  • Le Thuong Hien;Chae Young-Hun;Kim Seock Sam;Kim Bupmin;Yoon Sang-bo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.66-74
    • /
    • 2004
  • The sliding wear behavior of $ZrO_2-22wt\%MgO\;(MZ)\;and\;ZrO_2-8wt\%Y_2O_3\;(YZ)$ deposited on a casting aluminum alloy with bond layer (NiCrCoAlY) by plasma spray against an SiC ball was investigated under dry test conditions at room temperature. At all load conditions, the wear mechanisms of the MZ and the YZ coatings were almost the same. The wear mechanisms involved the forming of a smooth film by material transferred on the sliding surface and pullout. The wear rate of the MZ coating was less than that of the YZ coating. With an increase normal load the wear rate of the studied coatings increased. The SEM was used to examine the sliding surfaces and elucidate likely wear mechanisms. The EDX analysis of the worn surface indicated that material transfer was occurred from the SiC ball to the disk. It was suggested that the material transfer played an important role in the wear performance.

  • PDF