• Title/Summary/Keyword: dry root

Search Result 1,269, Processing Time 0.027 seconds

Effect of Growth Temperature and MA Storage on Quality and Storability of Red Romaine Baby Leaves (생육온도와 MA저장이 적로메인 상추 어린잎의 품질과 저장성에 미치는 영향)

  • Choi, Dam Hee;Lee, Joo Hwan;Choi, In-Lee;Kang, Ho-Min
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.3
    • /
    • pp.187-192
    • /
    • 2021
  • This study was conducted to compare the quality of baby leaves grown under several temperature conditions and the storage properties of MA storage for romaine lettuce. It was grown for 5 weeks under an artificial light source (200 µmol·m-2·s-1) in a chamber at 21℃, 28℃, and 35℃. The growth and quality of red romaine lettuce that grown in different temperatures were investigated at the end of cultivation, and the oxygen, carbon dioxide, and ethylene concentrations in the 20,000 cc OTR film and perforated film packed with lettuces were measured for 36 and 12 days, respectively. The red romaine lettuce baby leaf was examined for color, chlorophyll, and visual quality at the end of storage. The maximum quantum yield of baby leaf grown in different temperatures at 7days before the harvest was higher at 21℃ and 28℃ growth temperature treatments. On harvest day, the leaf length measured was longest at 28℃, and the leaf width was wider at 21℃ and 28℃, and the number of leaves was similar to 5-6 at all cultivation temperatures. Leaf weight, root weight, and dry weight were found to be higher at 21℃, and tended to decrease as the cultivation temperature increased. The concentration of ethylene in the film of the MA storage treatments was maintained at 1~2 µL·L-1 until the end of storage in all treatments regardless of the cultivation temperature. Oxygen concentration in the MA treatment used 20,000 OTR film was maintained at around 19.5%, and carbon dioxide concentration around 1% that was satisfied the CA conditions. Both Hunter a* and b* values were generally higher in the MA storage treatment at the end of storage day. The chlorophyll content was decreased as the cultivation temperature increased, and was lower in the MA storage treatment than in the perforated film treatment. Visual quality was 3 points or higher in the MA storage treatment at 21℃ growth treatment, and it was maintained marketability. As the above results, the growth of baby leaves of romaine lettuce was the best at 21℃ treatment, and the lower the cultivation temperature, the longer the shelf life. And it was possible to extend the shelf life by 3 times by showing excellent visual quality at the MA storage treatment that satisfies the carbon dioxide concentration of CA condition until the end of storage day.

Photosynthesis, Growth and Yield Characteristics of Peucedanum japonicum T. Grown under Aquaponics in a Plant Factory (식물공장형 아쿠아포닉스에서 산채 갯기름의 광합성, 생육 및 수량 특성)

  • Lee, Hyoun-Jin;Choi, Ki-Young;Chiang, Mae-Hee;Choi, Eun-Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.1
    • /
    • pp.67-76
    • /
    • 2022
  • This study aimed to determine the photosynthesis and growth characteristics of Peucedanum japonicum T. grown under aquaponics in a plant factory (AP) by comparing those grown under hydroponic cultivation system (HP). The AP system raised 30 fishes at a density of 10.6 kg·m-3 in a 367.5 L tank, and at HP, nutrient solution was controlled with EC 1.3 dS·m-1 and pH 6.5. The pH level ranged from 4.0 to 7.1 for the AP system and 4.0 to 7.4 for the HP system. The pH level in the AP began to decrease with an increase in nitrate nitrogen (NO3-N) and lasted bellower than pH 5.5 for 15-67 DAT. It was found that ammonium nitrogen (NH4-N) continued to increase even under low pH conditions. EC was maintained at 1.3 to 1.5 dS·m-1 in both systems. The concentration of major mineral elements in the fish tank was higher than that of the hydroponics, except for K and Mg. There was no significant difference in the photosynthesis characteristics, but the PIABS parameters were 30.4% lower in the AP compared to the HP at the 34DAT and 12.0% lower at the 74DAT. There was no significant difference in the growth characteristics, but the petiole length was 56% longer in the leaf grown under the AP system. While there was no significant difference in the fresh and dry weights of leaf and root, the leaf area ratio was 36.43% higher in the AP system. All the integrated results suggest that aquaponics is a highly-sustainable farming to safely produce food by recycling agricultural by-products, and to produce Peucedanum japonicum as much as hydroponics under a proper fish density and pH level.

Growth Characteristics of Strawberry Runner Plants according to Mixing Ratio of Reused Rockwool, Decomposed Granite, and Horticultural Media (재사용 암면, 마사토 및 원예용 상토의 혼합비율에 따른 딸기 자묘의 생육 특성)

  • Jeong, Ji-Hee;Bae, Hyo Jun;Ko, Baul;Ku, Yang Gyu;Kim, Ho Cheol;Bae, Jong Hyang
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.497-503
    • /
    • 2022
  • This study was conducted to investigate the horticultural media + decomposed granite + reused rock wool in the following mixing ratio: Control = 100:0, M1 = 80:0:20, M2 = 60:30:10, M3 = 40:30:30, M4 = 30:40:30, M5 = 0:50:50 (reused rockwool : decomposed granite : horticultural media) and develop the physicochemical properties and the growth of 'Sulhyang' strawberry runner plant. In the physical aspect of the horticultural media, statistical differences were recognized that the bulk density and particle density were lower in the control and M1. But the bulk density and particle density were high in the M3, M4, and M5, because it had high mixing ratio between recycled rock wool and decomposed granite. EAW and WBC showed a similar tendency. The air porosity and total porosity were higher in control and M1 than M3, M4, M5. Exchangeable cation (K+, Ca2+, Na+, Mg2+) and base replacement capacity (CEC) were higher in control and M1, than M2, M3, M4, and M5. As a result of the cultivation of 'Sulhyang' runner plant, the plant length was long in M2, 32.1 cm and smaller than M5 to 28.4 cm. However, if the crown diameter, which is the growth indicator of the runner plant, all 6 treatments were formed 11.23 mm-12.03 mm, which is considered to be suitable for the growth of the runner plant. There wasn't a statistical difference between the weight and dry weight of the root. As a result, the growth difference of the seedlings by the horticulture media was similar. Therefore, considering the physical properties of the horticultural media, it was judged that the air porosity and total porosity would be improved when the recycled rock wool and the decomposed granite were properly mixed rather than the use of the horticultural media as a single medium, which would be advantageous for irrigation management.

Effects of Long Term Fertilizations on Growth, Yield and Grain Development of Rice (비료의 장기연용이 벼의 생육ㆍ수량 및 미립발달에 미치는 영향)

  • Han, Hee-Suk;Lee, Moon-Hee;Shim, Jai-Sung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.1
    • /
    • pp.41-51
    • /
    • 1991
  • This study was conducted to determine the effect of 20 years long term fertilizations on the physical and chemical properties of paddy soil and the growth, yield, yield components and grain development of rice. Non-fertilized, PK, NK, NP, NPK, NPK + compost, NPK+straw and NPK+lime have been applied since 1968 after surface paddy soil was removed. NPK+compost and NPK+straw applications increased the content of organic matter, available P and CEC, and lime increased soil acidity and SiO$_2$ content. While chemical contents in non-fertilized treatment were low as compared with other treatments. Soil porosity was higher in NPK+straw (51.4%) and NPK+lime(53.1%) than in NPK application (49.8%). Soil hardness was highest in the NPK application and was lowest in the NPK + lime. Continuous application of straw with NPK markedly increased the content of aggregate with over 1mm(19.6%) as compared with NPK application (7.1%). Plant height, tiller number, root number, leaf area index and total dry weight were higher in the applications of compost, straw and lime with NPK than in any other treatments. Brown rice yield in non-fertilized, PK and NP applications was decreased 45, 55, 15 and 5% of that in NPK application, respectively, while application of compost, straw and lime with NPK increased the yield by 11, 14 and 4%, respectively, during 20 years. The number of differentiated rachis branchs in the application of compost, straw and lime was 17 to 21 and that in the other application was 13 to 15, whereas the degenerated rachis branchs was low in the application of compost, straw and lime with NPK. The applications having higher level of perfect rice grain such as non-fertilized, NPK+compost, NPK+straw and NPK+lime had high grain weight and had low level of white core rice, white belly rice. The white core and belly rice was highest in the NP application and notched belly rice kernel was markedly increased in NK and NP applications. The period of grain filling was 30 DAH at NP and NPK applications, 35 DAH at NK and NPK+lime, 40DAH at NPK+compost and NPK+ straw, and 45DAH at non-fertilized, respectively.

  • PDF

Shading Effects on the Growth and Physiological Characteristics of Osmanthus insularis Seedlings, a Rare Species (희귀 식물 박달목서 유묘의 생장 및 생리적 특성에 대한 차광 효과)

  • Da-Eun Gu;Sim-Hee Han;Eun-Young Yim;Jin Kim;Ja-Jung Ku
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.1
    • /
    • pp.88-96
    • /
    • 2024
  • This study was conducted to determine the optimal light conditions for the in situ and ex situ conservation and restoration of Osmanthus insularis, a rare plant species in South Korea. Evaluations included the growth performance, leaf morphological features, photosynthetic characteristics, and photosynthetic pigment contents of seedlings grown from April to November under different light conditions (100%, 55%, 20%, and 10% relative light intensity). The shoot lengths and root collar diameters did not differ significantly with relative light intensity. The dry weights of leaves, stems, and roots and the leaf number were highest at 55% relative light intensity. The leaf shape showed morphological acclimation to light intensity, with leaf area decreasing and thickness increasing as the relative light intensity increased. Several leaf parameters, including photosynthetic rate and stomatal conductance at light saturation point, net apparent quantum yield, and dark respiration, as well as chlorophyll a, chlorophyll b, and carotenoid contents, were all highest at 55% relative light intensity. Under full light conditions, the leaves were the smallest and thickest, but the chlorophyll content was lower than at 55% relative light intensity, resulting in lower photosynthetic ability. Plants grown at 10% and 20% relative light intensity showed lower chlorophyll a, chlorophyll b, and carotenoid contents, as well as decreased photosynthetic and dark respiration rates. In conclusion, O. insularis seedlings exhibited morphological adaptations in response to light intensity; however, no physiological responses indicating enhanced photosynthetic efficiency in shade were evident. The most favorable light condition for vigorous photosynthesis and maximum biomass production in O. insularis seedlings appeared to be 55% relative light intensity. Therefore, shading to approximately 55% of full light is suggested for the growth of O. insularis seedlings.

Studies on Nutrio-physiology of Low Productive Rice Plants (수도저위생산력(水稻低位生産力)의 원인구명(原因究明)에 관(關)한 영양생리적연구(營養生理的硏究))

  • Park, Jun-Kyu
    • Applied Biological Chemistry
    • /
    • v.17 no.1
    • /
    • pp.1-30
    • /
    • 1974
  • Present study was undertaken to elucidate the relationship between uptake of nutrients and photosynthetic activities, and the translocation of several mineral nutrients in rice plants which were grown under different cultural conditions, utilizing radioactive tracer technique. Particular emphasis was placed on the analysis of patterns of nutrient uptake, the relationship between nutritional conditions and yield components. For this, rice plants grown on either low or high yielding fields at different growth stage were subjected to this study. The results are summarized as follows; 1. Varietal difference was observed in the uptake of potassium and phosphorus. Kusabue and Jinheung had good capacity but Paldal had rather poor capacity for the uptake of the both nutrients. 2. For rice plants, a high positive correlation was found between the oxidation of alpha plaus-naphthylamine by root and uptake of phosphorus. 3. Carbon assimilation rate repended on rice varieties. It was high in Noindo, Gutaenajuok #3 Suweon #82 and Jinheung but low in Taegujo, Kwanok, Yugu #132 etc. 4. Heavy application of nitrogen increased carbon assimilation in rice plants but this also depressed translocation of certain carbohydrates to ears. 5. Carbon assimilation wan greatly hampered in rice plants deficient in magnesium, phosphorus or potassium. 6. Total dry matter after ear formation stage, was much higher in rice plants grown in high yielding fields than those grown in low yielding fields. 7. Leaf area index(LAI) reached maximum at heading stage and decreased thereafter in high yielding fields. But in low yielding fields, it reached maximum before heading and sharply decreased thereafter due to early senescence of lower leaves. 8. In general, light transmission ratio (LTR) of leaves was higher in the early growth stage and lower in later stages. Higher ratio of LTR to leaf area index, was found in the rice grown in high yielding fields than those in low yielding fields. 9. Net photosynthetic activity decreased with the increase in leaf area index but was higher in high yielding fields than in low yielding fields. 10. After the ear formation stage, nitrogen, potassium and silicon as weil as $K_2O/N$ in straw were higher in high yielding fields than those in low yielding fields. 11. Nitrogen, phosphorus, potassium and magnesium taken up by rice plants in low yielding fields before heading stage were readily translocated to ears than those in high yielding fields. This suggests greater redistribution of nutrients in straw occurs due to lower uptake, in later growth stages, by rice plants grown in low yielding fields and hence results in early senescence due to nutrient deprivation. 12. In the high yielding fields nitrogen uptake by rice was slow but continuous throughout the life of the plants resulting in a large uptake even after heading. But, in low yielding fields the uptake was fast before heading and slow after heading. 13. A high positive correlation was found between the contents of nitrogen and potassium in the straw at heading stage and grain yield. Positive correlation was also found to hold between the contents of potassium, silicon, $K_2O/N$, $SiO_2/N$ in the straw at harvesting stage, and grain yield. 14. Carbon assimilation was greately hampered in rice plants deficient in magensium, phosphorus or potassium. 15. Uptake of nitrogen, phosphorus, potassium, silicon and manganese by rice was considerably higher in high yielding fields and reached maximum at ear formation stage. 16. In rice, a high positive correlation was discovered between total uptake of nitrogen, phosphorus, potassium, calcium, magnesium, silicon, manganese at harvesting stage and grain yield. 17. In rice, a high positive correlation was found between the total uptake of nitrogen, phosphorus, potassium, calcium, magnesium, silicon at harvesting stage, and number of spikelets per $3.3\;m^2$. In addition, a correlation was found between the total uptake of nitrogen and potassium and number of panicles per hill.

  • PDF

Studies on Increasing the Efficiency of Nitrogen Nutrition (질소영양(窒素營養)의 효율증진(效率增進)에 관(關)한 연구(硏究))

  • Kwack, Pan-Ju
    • Applied Biological Chemistry
    • /
    • v.11
    • /
    • pp.151-166
    • /
    • 1969
  • I. Fffects of nitrogen supplying level and culture condition on the top growth aod tubers formation of Ipomoea Batatas. 1) The low level nitrogen (A plot) 3 Milliequivalent per liter of nutrient solution stimulated tuber formation while the high level nitrogen ($B_1\;and\;B_2$ plot) of 10 milliequivalent per liter failed to form tuber though fibrous roots were seen much activated. The suppressive effect of nitrogen on tuber formation in presumed to result from the direct suppressive effect of nitrogen or a certain biocatalystic effect rather than from any indirect effect through the stimulation to growth of tops or the competition with carbohydrates. 2) The addition of milligram urea to nutrient solution stimulated the growth and increased fresh weight and dry weight of the aerial part while suppressed, a little, plant length. 3) The water culture method, which this experiment newly adopted, stimulated plant growth more than the gravel Culture method. And the treatment of low level nitrogen (A plot) in this water culture also saw a considerable degree of tuber formation, as in the case of gravel culture. 4) The foliar application of growth retardant B-nine suppressed the plant length only, with no other recognizable effect. II. Fffects of urea supplying level on the growth of IPOMOEA BATATAS. 1) The higher level of urea which was absorbed tby roots through nutrient solution suppressed top growth, such as plant length, number of leaves and fresh weight. And this can be attributed to the direct absorption of urea which was not ammonificated. 2) Although the higher level of nitrate nitrogen (B plot) made no tuber formation in previous experiment (Report-1), the higher level of urea nitrogen (A plot) made tuber formation possible in this experiment. The ratio of tuber to top was, however, less in higher level of urea than in lower level of urea, and the suppressing effect was larger on tuber than on top. 3) The foliar application of urea stimulated top growth while the higher level of urea absorbed by roots suppressed it, though the amounts of urea supplied in two experiments were same. Ratio of top to roots was larger in foliar application of urea (C plot) and less in root absorption of urea both of higher (B plot) and lower urea levels (A plot). III. Fffects of growth retardant etc. on the growth of IPOMOEA BATATAS in relation to urea application. 1) B-nine (N-dimethyl amino-succinamic acid) is recognized as a growth retardant, suppressed the plant length irrespective of urea levels. The treatment of gibberellin stimulated distinctly plant length, and the combined treatment of gibberellin and B-nine recovered completely the plant length which had been suppressed by B-nine. 2) B-nine increased fresh weight, especially, fresh weight of top both in lower and higher level of The degree of fresh weight increase varied according to concentrations of B-nine, of which the 0.15% of B-nine ($B_1$ plot) was the effective in higher level of urea. The effect of B-nine for increasing fresh weight was the largest in top next in tuber, and the least in fibrous roots. The ratio of fibrous roots to top was always decreased by B-nine application, which the ratio of tuber to top was contrary increased by B-nine in higher level of urea though decreased in lower level of urea. 3) Gibberellin treatment also increased fresh weight but the combined treatment ($B_3$+GA plot) of gibberellin and B-nine was even more effective than any of single treatments. Gibberellin and B-nine proved to be synergistic with fresh weight while reverse with plant length. 4) Considerable influences were abserved mainly in the length of plants and their fresh weight after B-nine treatment. So that B-nine may be reguraded as a metabolic controller rather than as an antimetabolite. 5) The surpressed growth of plants cause by higher level of urea was normalized by B-nine treatment. This fact suggested a further study on the applicability for practical use.

  • PDF

Effects of the Development of Cracks into Deeper Zone on Productivity and Dryness of the Clayey Paddy Field (점토질 논 토양의 심층화가 토지생산성 및 유면건조에 미치는 영향)

  • 김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.3
    • /
    • pp.3059-3088
    • /
    • 1973
  • The Object of research was laid on the dry paddy field which had a low level of underground water, rather than on a paddy field with a high level of underground water. In the treatment of the clay paddy field before transplanting we employed 3 kinds of methods; deep plowing, development of cracks by drying the surface of the field under which pipe drain was built. This study was to find which one, among these three methods, is the most effective to let roots extend to deep zone and increase the yield of rice and at the same time, for trafficability of large scale machinery which will be introduced to the harvest, in the light of the earth bearing capacity in relation with underground drainage. In the treatments of plots, 1) the kyong plot was plowed 39 days before transplanting and dried, 2) the kyun plot was plowed again 2days before transplanting after plowing 39 days before transplanting, leveling field surface in the saturation with water and developing the cracks by drying, 3) the kyunam plot was plowed again 2 days before transplanting after setting the drainage pipe and at the same time plowing 39 days before transplanting, leveling field surface in the saturation with water and developing the cracks by drying. Also each plot above had three different levels of soil depth, respectively; that is 15cm, 25cm, 35cm. The kyong plot with 15cm-depth was he control. The results obtained were as follows; 1. The kyunam plot showed a remarkably lager amount of water consumption by better underground drainage than the kyong and the kyun plot, and the kyong plot indicated a greater amount of water consumption than the kyun plot. Therefore the amount of available rainfall was decreased in the order of kyunam>kyong>kyun. The net duty of water decreased in the order of kyunam>kyong>kyun and its showed about 105cm in depth at the kyunam plot, about 70cm in depth at the kyong plot and about 45cm in depth at kyun plot, regardless of soil depth. 2. According to the tendency that the weight of the total root was effected by the maximum depth of the crack, it seemed that the root development was more affected by the depth of the crack than by only the crack itself. The weight of the total roots tended to increase as the depth of the crack got deeper and deeper, and the weight of the total roots was increased in the order of kyun<kyunam<kyong. 3. In the growing of the plant height, the difference did not appear at the beginning of growing(peak period of tillering) of any plot, But for the mid period of growing(ending period of tillering) to the period of young panicle formation, the deeper the depth of plot is, the more the growing goes down. On the contrary at the late period of growing, growth was more vigorous in the plot with deep depth than in the plot with shallow depth. Since the midperiod of growing, in the light of experimental treatment, the kyun plot was not better in growing than the other two plots and no remarkable defference was shown between the kyunam and the kyong plot, but the kyunam plot had the tendency of superiority in growing plant height. 4. As the depth of plot went deeper, the decreasing tendency was shown in the number of tillers through a whole period of growingi. When the above results were observed concering each plot of experimental treatment, the kyun plot was always smaller in the number of tiilers than the kyunam and the kvong plot, and the kyong plot was slightly larger than the kyunam plot in the number of tillers. 5. When each plot of the different experimental treatments was compared with the control plot(15-kyong), yield(weight of grains) was increased by 17% for the 35-kyong plot, by 10% for the 35-kyunam and yields for the other plots were less or nomore than the control plot. On the whole, as the depth of plot went deeper, yields for plots was increased in the order of kyong>kyunam>kyun. 1% of significance between the levels of depths and 5% of significance between the treatments were shown. 6. The depth of consumptive water which was more effective on the weight of grains is that of the last half period. When the depth of consumptive water was increased at the range of less than 2.7cm/day in the 15cm plot, 3.0cm/day in the 25cm plot and 3.3cm/day in the 35cm plot, the weight of grains was increased, and at the same time the weight of grains was increased as the depth of plot went deeper. The deeper plots was of advantage to the productivity at the same depth of consumptive water. 7. The increase in the weight of grains in propertion to the weighte of root showed a tendency to increase depending on the depth of plot at each plot of the same weight of roots. The weight of roots and grains together increasezd in the order of kyun>kyunam>kyong, considering each treatment of experimental plot. The weight of grains was in relation to the minimum water content ratio during the midperiod of surface drainage and the average earth temperature was mainly affected by the minimum water content ratio because it was relatively increased in proportion to the water content ratio(at less than 40%) 8. The weight ratio of straw to grain showed an increasing tendency at the plot of shallow depth and had a relation of an inversely exponental function to the weight of roots. At the same depth of plot except the 15cm plot, the weight ratio of straw to grain was increased in proportion to the depth of consumptive water. The weight of grains was increased as the depth of consumptive water was increased to some extent, but at the same time the weight of ratio of straw to grain was increased. 9. At a certain texture of soils the increase in the amount of the cracks depends on meteorological conditions, especially increase in amounts of pan evaporation. So if it rains during the progressing of field drying the cracks largely decrease. The amount of cracks of clay soil had relation of inversely exponental function to the water content ratio(at more than 25%). The maximum depth of crack kept generally a constant value at less than 30% of water content ratio. 10. The cone index showed the tendency that it was propertional to the amount of cracks within a certain limit but more or less inversely proportional over a certain limit. The water content ratio at the limit may be about 25%. 11. The increase in the cone index with the progressing of time after final surface drainage showed the tendency that it was proportional to the depth of consumptive water at the last half of growing period. Based on the same depth of if the cone index in the kyunam plot was much larger than in the other two plots and that in the kyong plot was much smaller than in the kyun plott, as long as the depth of plot was deeper, especially in the 35-kyong plot. 12. In the light of a situation where water content ratio of soil decreased and the cone index increased after final surface drainage the porogress of the field dryness was much more rapid in the kyunam plot than in the kyong plot and the kyun plot, especially slowest in the kyong plot. In the plot with deeper zone the progress was much slower. The progress requiring the value of the cone index, $2.5kg/cm^2$, that working machinary can move easily on the field changed with the time of final surface drainage and the amount of rainfall, but without nay rain it required, in the kyunam plot, about 44mm in total amount of pan evaporation and more than 50mm in the other two plots. Therefore the drying in the kyunam plot was generally more rapid in the kyunam plot was generally more rapid over 2days than in the kyun plot, and especially may be more rapid over 5days than in the 35-kyong plot.

  • PDF

Studies on the morphological variation of plant organs of elongating node-part in rice plant (수도 신장 절위 경엽의 형태변이에 관한 연구)

  • 김만수
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.5 no.1
    • /
    • pp.1-35
    • /
    • 1969
  • Attempts were made to obtain the fundamental knowledge on the quantitative constitution status of leaves and stem of elongating node-part, and the relationships between these morphological characteristics along with the nitrogen contents of leaves and grain yield were examined varing application amounts of nitrogen in rice plant. I. The agronomic characteristics of leaves and nodes of elongation node-part (4-node parts from the top of stem) were observed at heading stage with 20 leading rice varieties of Kang Won district. The results are summarized as follows: 1. Leaf area magnitude of the flag and the fourth leaf was smaller than that of the second and the third with the average value of flag leaf 18.61 $cm^2$, the second leaf 21.84 $cm^2$, the third 21.52 $cm^2$ and the fourth 18.56 $cm^2$. The weight of leaf blade showed an isotonic tendency with the magnitude of leaf area with the value of the flag leaf 97.0 mg, the second leaf 117.1 mg, the third 115.4 mg, and the fourth 95.3 mg. The weight of each leaf sheath was remarkably larger at the higher node-part than at the lower node-part of the stem with the value of flag leaf sheath 176.3 mg, the second 163.7 mg, the third 163.4 mg and the fourth 123.9 mg. Accordingly, the total leaf weight of each part was larger at the second and the third leaf than at the first and the fourth. Total plant weight of each part (weight of leaf blade, leaf sheath, and culm) also was larger at the middle node-part. 2. Coefficients of variation for the varietal differences of the morphological characteristics of elongating node-part were 12.75% for the leaf area, 15.29% for the weight of leaf blade, 15.90%, for the weight of leaf sheath, 11.42% for the weight of internode, 15.45% for the leaf weight (leaf blade & leaf sheath) and 13.24% for the straw weight. And these coefficient values of the most characteristics were, on the whole, smaller at the second and the third node-part than at the first and the fourth node-part, but the coefficient value of the internode weight was rather small at the third and fourth node-part. 3. Constitutional ratio of each plant organ to the total plant weight in term of dry matter weight (excluding head and root wight) was 39.2% for the leaf sheath, 34.2% for the culm, 26.6% for the leaf blade. And ocnstitutional ratio of leaf sheath in term of dry matter weight was larger at the higher position in contrast with that of culm. 4. Average weight ration of leaf blade to culm, leaf sheath to culm, leaf blades to sheath and the leaf blades to culm plus leaf sheath were 77.7 %, 114.5%, 67.9% and 36.2%, respectively. With regard to the position of the plant organ, the weight ratio of leaf blade to culm and that of leaf sheath to culm were larger at higher part in contrast with that of leaf blade to leaf sheath. 5. Generally, there founded deep relationships between grain yield and each morphological characteristics of plant organ of elongating node-part as follows; Correlation coefficient between total area of 4 leaves (from flag to the fourth leaf) and grain yield was ${\gamma}$=0.666$^{**}$ In regard to the position of leaves, correlation coefficient values of flag, the second, the third and the fourth leaf were ${\gamma}$=0.659$^{**}$, ${\gamma}$=0.609$^{**}$, ${\gamma}$=0.464$^{*}$ and ${\gamma}$=0.523$^{*}$, respectively. Correlation coefficient between total weight of leaf blades and the grain yield was ${\gamma}$=0.678$^{**}$. In regard to the position of leaves, that of flag leaf was ${\gamma}$=0.691$^{**}$, and ${\gamma}$=0.654$^{**}$ for the second leaf, ${\gamma}$=0.570$^{**}$ for the third, and ${\gamma}$=0.544$^{**}$ for the fourth. Correlation between the weight of leaves (blade weight plus sheath weight) and the grain yield showed similar values. In the relationship between plant weight and grain yield there also was significant correlation, but with highly significant value only for the first node-part. There appeared correlation between total weight of leaf sheath and grain yield with the value of ${\gamma}$=0.572$^{**}$ and in regard to the position of each leaf sheath the values were ${\gamma}$=0.623$^{**}$ for the flag leaf, ${\gamma}$=0.486$^{**}$ for the second leaf, ${\gamma}$=0.513$^{**}$ for the third, ${\gamma}$=0.450$^{**}$ for the fourth. However, there was no significant correlation between culm weight and grain yield. 6. With respect to in gain yield, varietal differences in magnitude of leaf area, weight of leaf blade, leaf weight per unit area, weight of leaf sheath, culm weight, total leaf and stem weight were larger in the case of high yielding varieties and decreased in accordance with decreasing yield. And this tendency also was shown in the varietal differences of magnitude of each part. Variation in magnitude of each part for the leaf area, weight of leaf blade, culm weight was significantly small in high yielding varieties compared to low yielding varieties. 7. Plant constitutional ratio of each organ of the elongating node-part in term of weight magnitnde varied to som extent according to varieties indicating leaf blade 27.6%, leaf sheath 39.5%, culm 32.9% in the case of high yielding varieties, leaf blade 25.5%, leaf sheath 38.1%, culm 36.4% in the case of low yielding varieties, and medium yielding varieties showed intermadiate values. 8. Far higher values of the weight ration of leaf blade to culm and leaf sheath to culm were given to the high yielding varieties compared to low yielding varieties. And medium yielding varieties showed intermadiate values. II. Effects of application rate of nitrogen on the morphological characteristics of the elongating node-part, nitrogen content of leaf blade, and their relation with the grain yield of the rice were observed with 3 rice varieties; Shin No.2, Shirogane, and Jinheung varying application amounts of nitrogen as 8kg, 12kg and 16kg per 10 are. 1. As for the variation of morphological magnitude s affected by the amounts of nitrogen application, total leaf area (4 leaves from the flag leaf) increased to 16.5% at 12kg N plot, and about 30% at 16kg N polt compared to 8kg N plot and total weight of leaf blade also increased to similar extent, respectively, in contrast with weight of leaf sheath increasing 4.9% and 7.8%, respectively. However, the weight of culm decreased to 1.5% and 11.2%at the 12kg N plot and 16kg N plot, respectively, and these decreasing rate was noted at the nodes of lower part. 2. As for the verietal differences in variation of morphological magnitude as affected by the amount of nitrogen fertilization, leaf area coefficient value of variation of the total leaf area was 15.40% for Shin No. 2, 12.87% for Shirogane, and 10.99% for Jinheung. With respect to the position of nodes, the largest variation of leaf blade magnitude was observed at the fourth for Shin No. 2, the second for Shirogan, and flag leaf for Jinheung. And there also was an isotonic varietal difference in the weight of leaf blade. Variation in total culm weight showed varietal differences with the coefficient value of 7.72% for Shin No.2, 12.11% for Shirogane, and 0.94% for Jinheung. There also was varietal differences in the variation according to the position of nodes. 3. Variation of each elongating node-part related to the fertilization amount decreased with the increase of fertilization amount in the items of leaf area, weight of leaf sheath, culm weight, but weight of leaf sheath varied more at heavier fertilization than at others. 4. Constitutional ratio of each organ excluding head also varied with fertilization amount; constitutional ratio of leaf blade increased much with the increasing amount of fertilization in contrast with the response of culm eight. However, constitutional ration of the weight of leaf sheath was not much affected. 5. Lower value of the ration of leaf blade to culm was given to the 8kg N per 10 are plot, and the ratio of leaf blade to leaf sheath decreased with the increasing amount of fertilization in contrast with the increase in the ratio of leaf sheath to culm. however, the ration of leaf blade to culm plus leaf sheath decreased. 6. With the increase of nitrogen fertilization, leaf area, weight of leaf blade and leaf sheath increased. Accordingly, grin yield also increased to some extent. It was noted that culm weight was changed inversely to the changes in grain yield, but the degree of this variation varied with varietal characteristics. 7. Nitrogen content of leaves at heading and fruiting stage varied with the fertilization amount, and average nitrogen content of leaves of the varieties used 2.19%, 2.49% and 2.74% at the plot of 8kg N, and 12kg N and 16kg N per 10 are, respectively, at heading time, and 0.80%, 0.92% and 1.03% at each plot at fruiting stage. Thus, nitrogen content of leaves increased much with the increasing amount of fertilization, and higher value was given to the leaves on the higher position of elongating node-part. 8. There also was variation of nitrogen content of leaves in accordance with the varieties. However higher grain yield was obtained from the plants retaining higher nitrogen content in leaves at heading or fruiting stage.

  • PDF