• Title/Summary/Keyword: dry matter.

Search Result 3,586, Processing Time 0.031 seconds

Effects of Food Waste Compost and Mineral Nitrogen Application Level on Dry Matter Yield of Orchardgrass(Dactylis glomelata L.) (음식쓰레기 퇴비와 무기태 질소의 시용수준이 Orchardgrass의 건물수량에 미치는 영향)

  • Lee, Jusam;Jo, Ikhwan;Chang, Kiwoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.6 no.2
    • /
    • pp.81-93
    • /
    • 1998
  • In order to estimate the an adequate application level for dry matter production of orchardgrass(Dactylis glomerata L.) were investigated in different application levels of food waste compost and mineral nitrogen in 3 cuttings per annum, and to evaluated the soil improving effect of food waste compost. Annual food waste compost and mineral nitrogen were applied at levels of 0, 10, 20, 40 and $60ton\;ha^{-1}$, and 0, 90, 180 and $270kg\;ha^{-1}$, respectively. Significantly higher dry matter yield of orchardgrass obtained were ranges of $8.92{\sim}9.70ton\;ha-1$ at levels of $180{\sim}270kg\;ha^{-1}\;yr^{-1}$ than that of other levels of mineral nitrogen. Relative yield of each cut to annual dry matter yield were 32.0% 49.2% and 18.8% for 1st cut, 2nd cut and 3rd cut in mineral nitrogen treatment. Significantly higher dry matter yield of orchardgrass obtained were ranges of $8.04{\sim}8.90ton\;ha^{-1}$ at levels of $20{\sim}60ton\;ha^{-1}\;yr^{-1}$ than that of other levels of food waste compost. The efficiency of dry matter production to application of mineral nitrogen(kg DM $kg^{-1}$ N) were 21.2, 19.0 and 15.6kg at levels of 90, 180 and $270kg\;ha^{-1}\;yr^{-1}$, respectively. Higher efficiency of dry matter Production obtained were 27.6~20.2 kg at levels of $90{\sim}180kg\;ha^{-1}$ of mineral nitrogen applied to $20ton\;ha^{-1}$ of food waste compost, it may due to accelerated mineralization by mineral nitrogen application. Highest efficiency of dry matter production to application of food waste compost (kg DM $ton^{-1}$ FWC) obtained was 71.0 kg at level of $40ton\;ha^{-1}\;yr^{-1}$. Maximum dry matter yield of orchardgrass obtained were $9.98ton\;ha^{-1}$ at limiting level of mineral nitrogen of $358.5kg\;ha^{-1}$ and $9.12ton\;ha^{-1}$ at limiting level of food waste compost of $49.3ton\;ha^{-1}$ per annum, respectively. Ranges of $20{\sim}49.3ton\;ha^{-1}$ of food waste compost and $180{\sim}358.5kg\;ha^{-1}$ of mineral nitrogen were estimated an adequate levels for increase in dry matter production, and to maintenance for orchardgrass pastures. Application of food waste compost was affected to improve the soil characteristics.

  • PDF

A Comparative Study of Dry Matter Yield and Quality of Pasture Sown Different Species Seed Combination (초종구성을 달리한 혼파 초지의 건물수량 및 품질 비교 연구)

  • Lee, I.D.;Lee, Hyung-Suk
    • Journal of Animal Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.1081-1086
    • /
    • 2005
  • This study was conducted to investigate the effect of mixture types which consist of different species on the dry matter(DM) yield, botanical composition and forage quality. The experimental design includes three mixture types: Conventional mixtures(orchardgrass 50% + tall fescue 20% + perennial ryegrass 10% + Kentucky bluegrass 10% + white clover 10%), complex mixtures(orchardgrass 40% + tall fescue 20% + perennial ryegrass 10% + Kentucky bluegrass 10% + redtop 10% + alfalfa 5% + red clover 5%) and simple mixtures(orchardgrass 80% + red clover 20%). The DM yield was higher in conventional mixtures(13,070kg/ha) than in other mixtures(p<0.05). In the chemical composition and dry matter digestibility, there was significant difference among mixtures. Crude protein content and dry matter digestibility were higher in complex mixtures than in other mixtures(p<0.05). But, the content of fibrous constituents was higher in conventional mixtures than in other mixtures. The yield of crude protein dry matter(CPDM) and digestible dry matter(DDM) were higher in complex mixtures than in other mixtures. In this experiment, DM yields and quality of mixture types were observed significant difference. therefore, the complex mixtures which combined various species were more effective in enhancing the dry matter digestibility(DMD) and digestible dry matter(DDM) yield.

Response of Reed Canarygrass (Phalaris arundinacea L.) to Application of Cattle Slurry Nitrogen (액상구비의 시용수준에 대한 Reed Canarygrass의 반응)

  • Jo, Ikhwan;Lee, Jusam;Kim, Sungkyu;Ahn, Jongho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.4 no.1
    • /
    • pp.33-42
    • /
    • 1996
  • In this study, the adequate cutting frequency and level of cattle slurry nitrogen application were investigated for the production of Reed canarygrass. Higher relative dry matter yields were recorded in 2nd cut in 3 cutting frequency, 3rd cut in 4 cutting frequency and 4th cut in 5 cutting frequency respectively. With no fertilization, mean dry matter yields per year were 6.4~7.5 tons/ha and the highest yield appeared in 3 cutting frequency. The increased application of cattle slurry nitrogen resulted in the increased dry matter yield. Significantly higher dry matter yields than that of no fertilization were recorded in fertilization of 180 kg cattle slurry-N per year in 3 cutting frequency, 120 kg in 4 cutting frequency and 300 kg in 5 cutting frequency respectively. Efficiency of dry matter production with cattle slurry nitrogen application (kg DM/kg N) was higher in 120 kg N, 30 kg N and 90 kg N/ha/cut in 3, 4 and 5 cutting frequency respectively. In each cutting frequency, the higher efficiency of dry matter production appeared in 1st cut in 3 cutting frequency, and 2nd cut in 4 and 5 cutting frequency respectively. Economic slurry N level (kg/ha) was 462.7~525.3 kg/ha in 3 cutting frequency, and 353.1~423.2 kg/ha and 380.1~424.4 kg/ha in 4 and 5 cutting frequency respectively.

  • PDF

The Effect of Application Times of Cattle Slurry on Dry Matter Yield in Orchardgrass (액상구비의 시용시기가 오차드그라스의 건물수량에 미치는 영향)

  • 조익환;전하준
    • Korean Journal of Organic Agriculture
    • /
    • v.6 no.1
    • /
    • pp.99-108
    • /
    • 1997
  • The aim of this experiment was to investigate the effect of applying times of cattle slurry on dry matter yield of Orchardgrass, when cattle slurry applied at rates of 30m3(average mineral nitrogen fertilizer equivalent to 120kg) per ㏊ in different dressing times, such as S1(1st and 2nd growth), S2(1st and 3rd growth), S3(1st and 4th growth), S4(2nd and 3rd growth), S5(2nd and 4th growth) and S6(application for 3rd and 4th growth). The results were as follows. 1. The average annual yields of dry matter were produced 6.36~7.42 ton per ㏊ in 1995~1997 when cattle slurry applied at rates of 30m3(average mineral nitrogen fertilizer equivalent to 120kg) per ㏊ in different dressing times, especially these tendency were shown higher annual dry matter in S4 plot9application for 2nd and 3rd growth). Those were higher 2.48~3.54 tons or 1.22~2.28 tons per ㏊ than the yields from non-fertilizing or phosphrous and potassium fertilizing. 2. Relative yields of annual dry matter in cattle slurry application plots were 164(S2 plot)~191(S4 plot)% in comparing with non-fertilizing plot. 3. Dry matter yields according to cutting frequency were highest at the 2nd cut(1.50 ton) and were in the order 3rd cut(0.95 ton)>4th cut(0.75 ton)>1st cut(0.69 ton/㏊). Also, those of cattle slurry application plot per ㏊ were in the order 2nd cut(2.02~2.73 tons)>3rd cut(1.56~2.08 tons)>4th cut(1.07~1.68 tons)>1st cut(1.11~1.45 tons/㏊). 4. Relative yields of annual dry matter in cattle slurry application plots were 164~219, 161~210, 143~212 and 135~182% at the 3rd, 1st, 4th and 2nd cut, respectively in comparing with non-fertilizing plot. 5. The efficiencies of nitrogen on dry matter yield(kg DM/kg N) were 18.1, 21.3 and 34.5kg DM/kg N when cattle slurry applied to Orchardgrass at rates of 30m3 (average mineral fertilizer equivalent to 120 kg) per ㏊ in 1993, 1994 and 1995, respectively, especially these tendency were shown higher efficiencies in S4 plot(application for 2nd 3rd growth). On the other hand, those of the same level fertilization of mineral nitrogen were 43.8, 19.2 and 13.4 kg DM/kg N in 1993, 1994 and 1995, respectively.

  • PDF

Studies on Food Preservation by Controlling Water Activity 1. Measurement of Sorption Isotherm of Dried Filefish Muscle by Equilibration in Dynamic Stream of Conditioned Air (식품보장과 수분활성에 관한 연구 1. 조절기류에 의한 건조말쥐치육의 등온흡습곡선의 측정)

  • HAN Bong-Ho;CHOI Soo-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.189-193
    • /
    • 1981
  • An apparatus for continuous measurements of sorption isotherm of dried food was manufactured to shorten the time required for equilibration. The apparatus was so designed that the temperature, air velocity and relative humidity in the experimental chamber could be controlled. The use of dynamic stream of conditioned air with a velocity of 0.2m/sec, instead of static atmosphere, allowed a faster equilibration of dried filefish muscle at $25^{\circ}C$. The mean time necessary for the equilibration of dried filefish muscle at the water activity of a given state to a higher water activity was about 45 hours. The monolayer moisture content of dried filefish muscle calculated from BET-equation was 0.092 kg water /kg dry matter at $25^{\circ}C$.

  • PDF

Quantitative Analysis of Dry Matter Production and its Partition in Rice II. Partitioning of Dry Matter Affected by Transplanting Date (수도의 건물 생산 및 배분의 수리적연구 II. 이앙기에 따른 부위별 건물배분)

  • Cho, Dong-Sam;Jong, Seung-Keun;Heo, Hoon;Yuk, Chang-Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.3
    • /
    • pp.273-281
    • /
    • 1990
  • Two rice varieties, Samkangbyeo and Sangpungbyeo, were transplanted on 1/2000a pots at 6 different dates beginning on May 11 with 10 day interval in 1987 and at 4 different dates beginning on May 21 with 10 day interval in a paddy field at the Chungbuk Provincial Rural Development Administration. Dry matter distributions to stem and leaf sheath, leaves and ear at different growth stages were analyzed to provide basic informations neccessary for the development of dynamic growth model. Dry matter production was reduced as transplanting was delayed and the degree of reduction was greater at the transplanting later than June 1. Dry matter distribution to stem and leaf sheath was increased up to 60-70 days after transplanting with the maximum ratio between 60-70%, which were decreased to 37-43% in pots and 27-33% in field at the end of ripening stage. On the other hand, dry matter distribution to leaf blade was decreased from 40-50% at transplanting to 11-17% at harvesting. Ear dry matter distribution increased rapidly after heading and the distribution ratio was 42-49% in pots and 52-62% in field. Although regression equations to predict dry matter distribution to different parts of rice plant were satisfactory for individual experiment, the application to different experiment was not appropriate.

  • PDF

Responses of Pea Varieties to Rhizobium Inoculation: Nitrogenase Activity, Dry Matter Production and Nitrogen Uptake

  • Solaiman, A.R.M.;Khondaker, M.;Karim, A.J.M.S.;Hossain, M.M.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.5
    • /
    • pp.361-368
    • /
    • 2003
  • The responses of five varieties and three cultivars of pea (Pisum sativum) to Rhizobium inoculation on nodulation, growth, nitrogenase activity, dry matter production and N uptake were investigated. The pea varieties were IPSA Motorshuti-l, IPSA Motorshuti-2, IPSA Motorshuti-3, BARI Motorshuti-l, BARI Motorshuti-2 and the cultivars were 063, Local small and Local white. Fifty percent seeds of each pea variety/cultivar were inoculated with a mixture of Rhizobium inoculants at rate of 15g/kg seed and the remaining fifty percent seeds were kept uninoculated. The plants inoculated with Rhizobium inoculant significantly increased nodulation, growth, nitrogenase activity, dry matter production and N uptake. Among the varieties/cultivars, BARI Motorshuti-l performed best in almost all parameters including nitrogenase activity of root nodule bacteria of the crop. There were positive correlations among the number and dry weight of nodules (r=$0.987^{**}$, $0.909^{**}$), nitrogenase activity of root nodule bacteria (r=$0.944^{**}$, $0.882^{**}$), dry weight of shoot (r=$0.787^{**}$, $0.952^{**}$), N content (r=$0.594^{**}$, $0.605^{**}$) and N uptake (r=$0.784^{**}$, $0.922^{**}$) by shoot both at flowering and pod filling stages of the crop, respectively. It was concluded that BARI Motorshuti-l in symbiotic association with Rhizobium inoculant performed best in recording nitrogenase activity, dry matter production and N uptake by pea.

Effects of Teatment Level and Seasons of Slurry on Productivity of Rye (Secale cereale L.) (액상구비의 시용시기와 시용수준이 호밀 (Secale cereale L.) 의 생산성에 미치는 영향)

  • 육완방;차용복;금종성;이종민;한영근
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.17 no.1
    • /
    • pp.75-81
    • /
    • 1997
  • This study was wnducte to investigate the effects of treatment level and seasons of sluny hm bovine feces on the productivity of rye, N efficiency and improvement of soil fertility under the Korean climate condition. The results obtained fiom this study summarized as follows ; 1. The highest dry matter yield of rye was obtained in the partial fertilization of sluny in spring or autumn. There is no differences of dry matter yield between spring and autumn application. 2. With increasing the amount of slurry-N, the dry matter yield of rye was signigicantly increased up to 100Kg sluny Nha. As the level of slurry-N rises above about 100Kg N/ha, the maximal yield of dry matter was unchanged or declined. 3. As the level of sluny fertilization rises, the crude protein content of rye increases significantly. However the contents of crude protein was less affected by the application seasons. 4. The amount of nitrogen which produced 6om rye is dependent upon the level of slurry-N. The highest nitrogen yield of rye was obtained by the partial fertilization of sluny-N. 5. The season or amount of slurry treatments did not affect the organic matter content in soil. N-content in soil was the lowest by the partial fertilization of slurry in spring or autumn. However, N-content was increased with the higher level of sluny-N.

  • PDF

Effect of seeding depth on seedling growth and dry matter partitioning in American ginseng

  • Proctor, John T.A.;Sullivan, J. Alan
    • Journal of Ginseng Research
    • /
    • v.37 no.2
    • /
    • pp.254-260
    • /
    • 2013
  • Greenhouse and field experiments with American ginseng (Panax quinquefolius L.) stratified seed sown at depths of 10 to 100 mm were carried out to determine effects of seeding depth on seedling emergence, growth and development and to calculate optimum seeding depth. The time to 50% seedling emergence ($E_{50}$) in the field increased linearly from 17 d at 20 mm seeding depth to 42.5 d at 80 mm. Seedling emergence and root weight (economic yield) at the end of the first year each increased quadratically with the increase of seeding depth. Maximum emergence and root yields were produced at sowing depths of 26.9 and 30.6 mm respectively. In a greenhouse pot experiment, increasing seeding depth from 10 to 100 mm increased partitioning of dry matter to leaves from 23.6% to 26.1%, to stems from 6.9% to 14.2%, and decreased dry matter to roots from 69.5% to 59.7%. Optimum seeding depth was 31.1 mm for a corresponding maximum root weight of 119.9 mg. A predictor equation [X (seeding depth, mm)=Y (seed weight, mg)/9.1+20.96] for seeding depth for ginseng, based on data for ten vegetable crops, their seed weights and suggested seeding depths, predicted a seeding depth of 28.3 mm for ginseng similar to that reported above for most pot and field experiments.

Optimization of Process Parameters for Dry Film Thickness to Achieve Superior Water-based Coating in Automotive Industries

  • Prasad, Pranay Kant;Singh, Abhinav Kr;Singh, Sandeep;Prasad, Shailesh Kumar;Pati, Sudhanshu Shekher
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.121-129
    • /
    • 2022
  • A study on water-based epoxy coated on mild steel using the electroplating method was conducted to optimize the process parameters for dry film thickness to achieve superior paint quality at optimal cost in an automotive plant. The regression model was used to adjust various parameters such as electrode voltage, bath temperature, processing time, non-volatile matter, and surface area to optimize the dry film thickness. The average dry film thickness computed using the model was in the range of 15 - 35 ㎛. The error in the computed dry film thickness with reference to the experimentally measured dry film thickness value was - 0.5809%, which was well within the acceptable limits of all paint shop standards. Our study showed that the dry film thickness on mild steel was more sensitive to electrode voltage and bath temperature than processing time. Further, the presence of non-volatile matter was found to have the maximum impact on dry film thickness.