• Title/Summary/Keyword: dry land forest

Search Result 95, Processing Time 0.033 seconds

Analysis of Relationship between Land Cover Change and Vegetation Temperature Condition Index in Central Dry Zone of Myanmar (미얀마 건조지 토지피복 변화와 식생온도조건지수간의 관계분석)

  • Choi, Sol-E;Lee, Woo-Kyun;Yu, Hangnan;Kang, Ho-Duck;Kim, Yong-Suk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.2
    • /
    • pp.82-94
    • /
    • 2014
  • The purpose of this study is to investigate the cause of increasing dry zones through analyzing relationships between land cover and Vegetation Temperature Condition Index(VTCI) using Landsat 4-5 TM satellite images in Central Dry Zones of Myanmar. As a result of land cover classifications, while vegetation areas gradually decrease, residential area and cropland were increased. VTCI analysis shows that region (a) showed a gradual decrease in the area of severely arid, and increase in the area of moderate dry and wet, which sums up to a slight decrease in aridity. Region (b) also showed to increase in dry areas and severe aridity. The result of relational analysis between VTCI and land cover change showed high ratio of land cover change, from severe arid area to forest and residential farmland. The average VTCI decreased in the changed land covers, which indicates the relationship between aridity and land cover change and a gradual increase in the arid area was identified.

Consequences of land use change on bird distribution at Sakaerat Environmental Research Station

  • Trisurat, Yongyut;Duengkae, Prateep
    • Journal of Ecology and Environment
    • /
    • v.34 no.2
    • /
    • pp.203-214
    • /
    • 2011
  • The objectives of this research were to predict land-use/land-cover change at the Sakaerat Environmental Research Station (SERS) and to analyze its consequences on the distribution for Black-crested Bulbul (Pycnonotus melanicterus), which is a popular species for bird-watching activity. The Dyna-CLUE model was used to determine land-use allocation between 2008 and 2020 under two scenarios. Trend scenario was a continuation of recent land-use change (2002-2008), while the integrated land-use management scenario aimed to protect 45% of study area under intact forest, rehabilitated forest and reforestation for renewable energy. The maximum entropy model (Maxent), Geographic Information System (GIS) and FRAGSTATS package were used to predict bird occurrence and assess landscape fragmentation indices, respectively. The results revealed that parts of secondary growth, agriculture areas and dry dipterocarp forest close to road networks would be converted to other land use classes, especially eucalyptus plantation. Distance to dry evergreen forest, distance to secondary growth and distance to road were important factors for Black-crested Bulbul distribution because this species prefers to inhabit ecotones between dense forest and open woodland. The predicted for occurrence of Black-crested Bulbul in 2008 covers an area of 3,802 ha and relatively reduces to 3,342 ha in 2020 for trend scenario and to 3,627 ha for integrated-land use management scenario. However, intact habitats would be severely fragmented, which can be noticed by total habitat area, largest patch index and total core area indices, especially under the trend scenario. These consequences are likely to diminish the recreation and education values of the SERS to the public.

Numerical Simulation for Dry Deposition Velocity of Ozone According to Land-use Types (지표면의 종류에 따른 오존의 건성침적속도에 관한 수치모의)

  • 이화운;노순아;문난경
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.5
    • /
    • pp.583-594
    • /
    • 2003
  • Ozone is an important atmospheric pollutant that is occurred in tropospheric chemical process and it also affects the human health and plants. For a correct application of abatement strategies for ozone, it is necessary to understand the factors that control atmospheric ozone removal by dry deposition processes. The present study investigates the numerical simulation of the dry deposition velocity (V$^{d}$ ) obtained from PNU/DEM (Pusan National University Deposition Model). PNU/DEM includes seasonal categories, meteorological factors, surface properties and land-use types and proposes for an accurate numerical computation. And, this study examines the ability of the PNU/DEM to compute V$_{d}$ of ozone over water surfaces and evaluates PNU/DEM by comparing its estimated V$_{d}$ to past observed V$_{d}$ over water. The parametrization was found to yield V$_{d}$ values generally in good agreement with the observations for the deciduous forest and the coniferous forest. Ozone is removed slowly at wet surface or water due to its low water solubility. Therefore V$_{d}$ values over water were lower than Vd values over the other surfaces. Comparison of PNU/DEM simulated V d values to observations of ozone V$_{d}$ that have been reported in the literature implies that PNU/DEM produces realistic results.

Analysis of Composition and Diversity of Natural Regeneration of Woody Species in Jebel El Gerrie Dry Land Forest East of Blue Nile State, Sudan

  • Abuelbashar, Ahmed Ibrahim;Ahmed, Dafa-Alla Mohamed Dafa-Alla;Siddig, Ahmed Ali Hassabelkreem;Yagoub, Yousif Elnour;Gibreel, Haithum Hashim
    • Journal of Forest and Environmental Science
    • /
    • v.38 no.2
    • /
    • pp.90-101
    • /
    • 2022
  • The study aims to assess composition, diversity and population indices of natural regeneration of woody species in Jebel El Gerrie forest reserve, Blue Nile State, Sudan. We conducted field work between December 2018 and January 2019. We used random sampling to collect vegetation data in the forest where we made a total of 90 circular sample plots (radius 17.84 m) and distributed them proportionally to the area of each of the four density-based vegetation classes of the forest i.e. high density (C1), medium density (C2), low density (C3) and crop land (C4). In each sample plot we identified all regenerating tree species and counted their regeneration frequencies. We calculated ecological metrics of regeneration frequency, density, abundance, richness, evenness, diversity and importance value index (IVI) and drew abundance rank curve. Results revealed that out of fifteen mature tree species present, natural regeneration of 8 species, which belong to 6 families, was observed. The relatively most frequently naturally regenerating and abundant species were Anogeissus leiocarpa and Combretum hartmannianum. Richness, evenness and diversity of regenerating species were 1.33, 0.82 and 1.7, respectively. One-way ANOVA (α=0.05) of mean regeneration densities disclosed that there were significant differences (F3,86=16.77, p=0.000) between C2 & C3 (p=0.000) and C2 & C4 (p=0.000). While regeneration of seven tree species were absent, two, two and four species were of good, poor and fair regeneration status, respectively. A comparison of mean density of natural regeneration with that of parent trees reflects a poor regeneration status of the forest. The study provides empirical results on the regeneration status of species and signifies the need for management interventions for species conservation and restoration, maintenance of biodiversity and sustainable production.

Land Use Dynamic Change and Ecological Effects Analysis Based on GIS - A Case Study at Hailun City

  • Zhang, Yue;Li, Fengri;Jia, Weiwei
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.2
    • /
    • pp.138-146
    • /
    • 2013
  • The typical natural landscapes and temporal- spatial regulation of Land use change and their ecological effects at Hailun County were conducted and analyzed, based on the translated data from remote sensing images in 1986, 1996 and 2000 using GIS and landscape ecological theory. The results indicated the area of arable land, paddy field and city land increased 7,786.39 $hm^2$, 3391.18 $hm^2$ and 120.84 $hm^2$ while the area of forestry, grassland and marsh decreased 3,184.88 $hm^2$, 1,625.8 $hm^2$ and 3,994.85 $hm^2$ respectively during 14 years. Dry land is a main landscape in this area. These changes made the environmental quality worse gradually, such as land degradation, soil erosion and water and soil losses, and temperature getting warmer. This study is very important for the local ecological environment protect and agricultural sustainability and land resources sustainable using.

Wood and Leaf Litter Decomposition and Nutrient Release from Tectona grandis Linn. f. in a Tropical Dry Deciduous Forest of Rajasthan, Western India

  • Kumar, J.I. Nirmal;Sajish, P.R.;Kumar, Rita.N.;Bhoi, Rohit Kumar
    • Journal of Forest and Environmental Science
    • /
    • v.26 no.1
    • /
    • pp.17-23
    • /
    • 2010
  • The present study was conducted to quantify wood and leaf litter decomposition and nutrient release of a dominant tree species, Tectona grandis Linn. F. in a tropical dry deciduous forest of Rajasthan, Western India. The mean relative decomposition rate was maximum in the wet summer and minimum during dry summer. Rainfall and its associated variables exhibited greater control over litter decomposition than temperature. The concentrations of N and P increased in decomposing litter with increasing retrieval days. Mass loss was negatively correlated with N and P concentrations. The monthly weight loss was significantly correlated (P < 0.05) with soil moisture and rainfall in both wood and leaf litter. Tectona grandis was found to be most suitable tree species for plantation programmes in dry tropical regions as it has high litter deposition and decomposition rates and thus it has advantages in degraded soil restoration and sustainable land management.

The role of dry land forests for climate change adaptation: the case of Liben Woreda, Southern Oromia, Ethiopia

  • Amanuel, Wondimagegn;Tesfaye, Musse;Worku, Adefires;Seyoum, Gezahegne;Mekonnen, Zenebe
    • Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.85-97
    • /
    • 2019
  • Background: Despite the increasing role of dry forests in climate change adaptation and mitigation, these versatile resources has got less attention in the national and regional planning, their potential to enhance the local and national economy has been overlooked, and their contribution to sustainable environmental management has not been recognized. Hence, the objective of this study was to assess the socioeconomic contribution of dry forests and forest products to climate change adaptation in the Liben Woreda, Southern Oromia region of Ethiopia. Methods: For this study, an integrated qualitative and quantitative approach was used. A total of 74 households from villages in the Bulbul, Boba, and Melka-Guba kebeles were randomly selected for the household survey. Results: Results showed that 75% of the respondents in the area indicated that climate change has become their major sources of vulnerability, where drought has been manifested in the form of crops failure and massive death of livestock particularly cattle species. The main income strategies of the study households include livestock, crop, forests such as gum and resins, firewood and charcoal and non-farm activities such as in the form of petty trade, wage and aid. The average total household income was ETB 11,209.7. Out of this, dry forest income constituted 15% of the total income. In addition to using dry forests as rangeland for livestock, the communities collect wood for construction, fodder, traditional medicine, and forest food both for subsistence and for sale. On the other hand, dry forest products could be considered as less vulnerable, rather resilient livelihood strategies to climate- and environment-related risks compared to livestock and crop production such as in the face of drought periods. More than 48.6% of the households argued that the income generated from dry forests increased substantially due to increment in the level of engagement of family members in forest based income activities. On the other hand, 35.8% of the households responded that livestock production, particularly camels and goats, have been making the livelihood strategies of the respondents more resilient indicating the shift made from grazers browsers to livestock. In general trends show that, the trends of livelihood dependency on dry forest were highly increasing indicating the importance of dry forest income in responsse to frequent droughts. Conclusions: Dry forest income has been becoming crucial livelihood staretgy in response to frequent droughts in the study area and hence, it is important to improve the management of dry forests for livelihood enhancement, while also securing their long-term ecological functions.

Cations of Soil Minerals and Carbon Stabilization of Three Land Use Types in Gambari Forest Reserve, Nigeria

  • Falade, Oladele Fisayo;Rufai, Samsideen Olabiyi
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.2
    • /
    • pp.116-127
    • /
    • 2021
  • Predicting carbon distribution of soil aggregates is difficult due to complexity in organo-mineral formation. This limits global warming mitigation through soil carbon sequestration. Therefore, knowledge of land use effect on carbon stabilization requires quantification of soil mineral cations. The study was conducted to quantify carbon and base cations on soil mineral fractions in Natural Forest, Plantation Forest and Farm Land. Five 0.09 ha were demarcated alternately along 500 m long transect with an interval of 50 m in Natural Forest (NF), Plantation Forest (PF) and Farm Land (FL). Soil samples were collected with soil cores at 0-15, 15-30 and 30-45 cm depths in each plot. Soil core samples were oven-dried at 105℃ and soil bulk densities were computed. Sample (100 g) of each soil core was separated into >2.0, 2.0-1.0, 1.0-0.5, 0.5-0.05 and <0.05 mm aggregates using dry sieve procedure and proportion determined. Carbon concentration of soil aggregates was determined using Loss-on-ignition method. Mineral fractions of soil depths were obtained using dispersion, sequential extraction and sedimentation methods of composite soil samples and sieved into <0.05 and >0.05 mm fractions. Cation exchange capacity of two mineral fractions was measured using spectrophotometry method. Data collected were analysed using descriptive and ANOVA at α0.05. Silt and sand particle size decreased while clay increased with increase in soil depth in NF and PF. Subsoil depth contained highest carbon stock in the PF. Carbon concentration increased with decrease in aggregate size in soil depths of NF and FL. Micro- (1-0.5, 0.5-0.05 and <0.05 mm) and macro-aggregates (>2.0 and 2-1.0 mm) were saturated with soil carbon in NF and FL, respectively. Cation exchange capacity of <0.05 mm was higher than >0.05 mm in soil depths of PF and FL. Fine silt (<0.05 mm) determine the cation exchange capacity in soil depths. Land use and mineral size influence the carbon and cation exchange capacity of Gambari Forest Reserve.

Studies on the Desertification and Sand Industry Development(II) - Analysis of Silvicultural Techniques and Effects of Landscape-Eco Shelterbelt Establishment - (사막화방지(沙漠化防止) 및 방사기술개발(防沙技術開發)에 관한 연구(硏究)(II) - 중국(中國)의 경관(景觀)-생태(生態) 방호림조성기술(防護林造成技術) 및 효과분석(效果分析) -)

  • Woo, Bo-Myeong;Lee, Kyung-Joon;Jeon, Gi-Seong;Kim, Kyung-Hoon;Choi, Hyung-Tae;Lee, Seung-Hyun;Lee, Byung-Kwon;Kim, So-Yeon;Lee, Sang-Ho;Jeon, Jeong-Ill
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.3
    • /
    • pp.81-99
    • /
    • 2000
  • The shelterbelts are very important to conserve and protect the sandy land, vegetation coverage, farmland, livestock and human life in the desertified land. The shelterbelts are constructed by the several row-plantings of high-adaptable species in the desertified land. The shelterbelts have various kind of type, and there are shelterbelts for conservation of farmland in dry the region, the protective shelterbelts (windbreaks for blowing-sand, artificial sanddune fixation by revegetation, and construction of farmland shelterbelts to protect farmland and pasture from wind erosion, etc.) in the semi-dry steppe, shelterbelts around the villages and oasis for sanddune fixation, shelterbelts for protection of railroads, and so on. The shelterbelts consist of main she1terbelts and minor shelterbelts. The main shelterbelts were constructed by being perpendicular to main wind direction, and the minor shelterbelts were constructed by being perpendicular to the main shelterbelts. Generally, the width of shelterbelts is 8~20m, and the number of row-planting is 4~10. The grid sizes of shelterbelts networks are $400{\times}400m$, $300{\times}500m$, $100{\times}200m$, and so on, and there are ventilation type and closing type in the type of shelterbelt. The width, number of row-planting, grid size and type of shelterbelt are selected by the local characteristics. The effects of shelterbelts are mainly the climate improvement and mitigation, such as prevention of occurrence of strong wind, cold wind and blowing-sand. And, the other effects of shelterbelts are effect of reforestation, increase of agricultural productions, establishment of greenbelts and green forests, construction of landscape-eco shelterbelts, improvement of life environment of local villages, supply of fuel wood and agricultural wood, land amelioration, effect of revegetation and restoration of desertified land, and so on. The kinds of the tree species mainly used for the construction of shelterbelts have differences between regions, but main species are Populus euphratica, Populus simonii, Populus bolleana, Populus tomentosa, Salix flavida, Salix mongolica, Tamarix chinensis, Hedysarum scoparium, and so on.

  • PDF

Biomass Energy in the USA: A Literature Review (III) - Bioethanol production from Biomass and Feedstock Supply - (미국 에너지 시장에 공급되는 바이오에너지에 관한 연구 (III) - 바이오매스를 이용한 에탄올 생산과 원료공급에 대하여 -)

  • Kim, Yeong-Suk;Gorman, Thomas
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • This study was reviewed on the bioethanol production from biomass resources and feedstock supply in America. U.S. Department of Energy (USDE) and the u.s. Department of Agriculture USDA) are both strongly committed to expand the role of biomass as an energy source. They support biomass fuels and products as a way to reduce the need for oil and gas imports, to strengthen the nation's energy security and environmental quality. And it was envisioned a 20 percent replacement of the current U.S.transportation fuel consumption in 2030. Also it was reviewed policies to encourage the expanding of Bio-based fuel use to replace gasoline, such as Clean Air Act, Federal Clean Fuel Program and American Jobs Creation Act. In feedstock supply it was assumed forest biomass will be supplied in 368 million dry tons yearly and the agriculture derived biomass adopted by new technologies and land use change will be supplied in 998 million dry tons, including highly 818 million dry tons of lignocellulosic biomass such as perenial crops (hybrid trees, grasses) corn stover, other crop residues. This amount is 5 times to the amount from based current agricultural technology and crop land.