• Title/Summary/Keyword: dry bulb temperature

Search Result 115, Processing Time 0.024 seconds

Basic research on the Building Energy Load Depending on The Climate Change in Korea (대한민국 표준기상데이터의 변화추이와 건물부하량에 관한 기초연구)

  • Yoo, Ho-Chun;Lee, Kwan-Ho;Kang, Hyun-Gu
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.3
    • /
    • pp.66-72
    • /
    • 2009
  • As 'Low Carbon Green Building' is highly required, programs to evaluate building performance are actively and commonly used. For most of these programs, dynamic responses of buildings against external weather changes are very important. In order to simulate the programs, weather data of each region must be properly entered to estimate accurate amount of building energy consumption. To this end, the existing weather data and weather data of KSES were compared and analyzed to find out how weather changes. Energy load of Korea's standard houses was also analyzed based on this data. As a result, data corresponding to June ${\sim}$ September when cooling is supplied shows 23% of average increase with 30% of peak increase(June). On the other hand, data corresponding to November ${\sim}$ February when heating is supplied shows 29% of average decrease with 34% of peak decrease(November). Increase in cooling load and decrease in heating load in the above data comparison/analysis show that KSES 2009 data reflects increase in average temperature caused by global warming unlike the existing data. Increase in dry-bulb temperature depending on weather change of standard houses increases cooling load by 17% and decreases heating load by 36%

A Comparative Study on the Windchill Indices (체감온도이론의 비교 연구)

  • Park, Jeon-Hwan;Han, Uk;Park, Rae-Seol
    • Journal of the Korean earth science society
    • /
    • v.23 no.8
    • /
    • pp.676-682
    • /
    • 2002
  • The concept of sensible temperature in winter is an attempt to quantify the sensation of cold by dry-bulb temperature combined with wind speed. Siple-Passel’s windchill equivalent temperature originated in experiments that are not conformable to various human conditions. Therefore, many investigators have found the flaws which are listed. Steadman’s model is based on the concept of thermal equilibrium and more sound and more representative of human conditions. But no classifications exist for Steadman’s windchill equivalent temperature, yet. The JAG/TI-model which was developed by US and Canada is more accurate, easy to understand and reflects human beings by conducting experiments using human volunteers but didn't take into account solar radiation, wet condition and physical state of the individual. Because of individual differences in people’s age, activity, health, metabolic rate, etc., no experimental evidence exists to suggest whether Siple-Passel’s, Steadman’s and JAG/TI-model’s windchill equivalent temperature is more applicable to the majority of people. Therefore we need the windchill model which is best applicable to Korean Army.

The Characteristics of the winter season window and indoor temperature due to the indoor plant (동계 이중외피와 내부식재에 의한 실내 온도 특성에 관한 연구)

  • Yun, Young-Il;Cho, Ju-Young
    • KIEAE Journal
    • /
    • v.15 no.5
    • /
    • pp.107-112
    • /
    • 2015
  • Purpose: This study desires to investigate an effect of indoor temperature, humidity, and illuminance targeting a planting system of double-skin facade and cavity space adjacent to the outside within a certain period of winter. Through this, the study suggests a basic material about an energy conservation effect of double window system using planting to reduce heating load of a building in winter, so desires to contribute to indoor thermal comfort effect and illuminance correction study of double window and indoor plant. Method: Considering effects such as day and night climatic elements and air conditions in winter, illuminance measurement was conducted through a double-skin facade of space, a subject of the measurement, on the basis of practical residence time of a resident, and this study analyzed characteristics of indoor illuminance about this. The study measured and compared a change of insolation, dry-bulb temperature, and relative humidity at each indoor-outdoor measuring point, so measured and compared characteristics of an indoor temperature effect by elements of double-skin facade and indoor plant. Result: Through this study, the researcher could determine that indoor plant within double window in winter not only blocks solar radiation but also photosynthesizes, so is somewhat disadvantageous to winter thermal comfort reducing heating load. In addition, solar radiation going through interior plays a role to bring down somewhat high humidity to about 50% of reasonable humidity, so plays a direct role of maintenance of comfortable indoor space. Although there are effects such as blocking of solar radiation and temperature reduction, this has a positive influence on humidity control and proper illuminance distribution. The researcher could determine that illuminance, temperature, and humidity by solar radiation penetration for the whole measuring time play a role to supplement indoor environment mutually.

An Experimental Study on the Performance of a Simultaneous Heating and Cooling Heat Pump in the Cooling-only and Cooling-main Operation Mode with the Variation of the Indoor Air Temperature (동시냉난방 열펌프 시스템의 냉방전용 및 냉방주체 운전모드에서의 실내기온 변화에 따른 성능특성에 관한 실험적 연구)

  • Ahn, Jae-Hwan;Joo, Young-Ju;Kang, Hoon;Chung, Hyun-Joon;Kim, Yong-Chan;Choi, Jong-Min
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2165-2170
    • /
    • 2008
  • The cooling load in winter season is significant in many commercial buildings and hotels because of the usage of office equipments and the high efficiency of wall insulation. Therefore, the development of a multi-heat pump which can cover heating and cooling simultaneously for each indoor unit is required. In this study, the characteristics and performance of a simultaneous heating and cooling heat pump in the cooling-only and cooling-main operating mode was investigated experimentally with a variation of indoor air dry bulb temperature which is from $21^{\circ}C$ to $35^{\circ}C$. EEV opening was adjusted from 20% to 24% during the tests. When the indoor air temperature varied, the performance in the cooling-only mode was more sensitive to the temperature than in the cooling-main mode. The total capacity and COP were increased by 53.8% and 48.1%, respectively, in the cooling-main, while those were increased by 19.6% and 19.3% in the cooling-only mode. The performance differences between the two operating modes became larger at lower temperatures, especially for the COP.

  • PDF

Effectiveness of the Aluminum Thermal Screens Depending on the Allocation Type (알루미늄반사재의 배치형태에 따른 보온 효과)

  • Kim, Young-Bok;Park, Joong-Choon;Huh, Moo-Ryong;Lee, Si-Young;Jeong, Sung-Woo
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.284-290
    • /
    • 2007
  • Thermal insulation effectiveness of the aluminum insulator depending on the direction of its glossing face, number of layer and allocation position was investigated. Modules were assembled by the combination of the variables levels and experimented for the case of 100 W and 40 W heating in the modules. The temperatures in the modules with the aluminum insulator were higher than those of the modules with polyester curtains. For the modules with one layer aluminum insulator, the inside temperatures of the modules with the direction of the glossing face outward were higher than those of the modules of inward. For two layer of aluminum insulator, the directions of those glossing faces were recommended to be the same direction for higher thermal insulation effectiveness. For the modules without heating, the temperature difference between the modules were not significant. The black globe temperatures in the modules were changed with the similar tendencies with the dry bulb temperatures in the modules. Those of the black globes were higher than those of the dry bulb temperatures as a whole. It was more distinguished for the modules of inward direction.

A Basic Study to Predict Solar Insolation using Meteorological Observation Data in Korea (국내 기상 측정결과를 이용한 일사량 예측 방법 기초 연구)

  • Hwangbo, Seong;Kim, Hayang;Kim, Jeongbae
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.2
    • /
    • pp.27-33
    • /
    • 2014
  • To well design the solar energy system using solar energy, the correlation to calculate solar irradiation is basically needed. So, this study was performed to reveal the relationships between the solar irradiation and four meteorological observation data(dry bulb temperature, relative humidity, sunshine duration, and cloud cover) which are different from previous other researches. And then, we finally proposed the first order non-linear correlation from the measured solar irradiation using four meteorological observation data with MINITAB. To show the deviation of the solar irradiation between measured and calculated, this study compared using the daily total solar irradiance and the maximum peak value. From those results, the calculation error was estimated about maximum 25.4% for the daily total solar irradiance. The error of the solar irradiation between measured and calculated was made from the curve fitting error. So, solar irradiation prediction correlation with higher accuracy can be obtained using 2nd or higher order terms with four meteorological observation data.

Prediction of Latent Heat Load Reduction Effect of the Dehumidifying Air-Conditioning System with Membrane (분리막 제습공조시스템의 잠열부하 저감효과 예측)

  • Jung, Yong-Ho;Park, Seong-Ryong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.1
    • /
    • pp.15-20
    • /
    • 2017
  • The summer climate is very hot and humid in Korea. The humidity is an important factor in determining thermal comfort. Recently, the research for dehumidification device development has been attempted to save energy that is required for the operation of the current dehumidifiers on the market. Existing dehumidification systems have disadvantages such as wasting energy to drive a compressor. Meanwhile, dehumidification systems with membranes can dehumidify humid air without increasing the dry bulb temperature so it doesn't have to consume cooling energy. In this paper, the cooling energy savings was studied when a dehumidification system was applied in a model building instead of a chiller. The sensible heat load was almost the same result, but the latent heat load was decreased by 38.9% and the total heat load was decreased by 8.5%. As a result, electric energy used to drive the compressor in a chiller was saved by applying a membrane air-conditioning system instead.

A Study on Air Flow Analysis for the Internal Space of the Dehumidifying Air-Conditioning System with A Membrane (분리막 제습공조시스템의 내부 유동 해석에 관한 연구)

  • Jung, Yong-Ho;Park, Seong-Ryong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.12
    • /
    • pp.620-625
    • /
    • 2015
  • The summer climate is very hot and humid in Korea. Humidity is an important factor in determining thermal comfort. Recently, research on dehumidification device development has been attempted to save the energy required for operating the dehumidifier. Existing dehumidification systems have disadvantages such as wasting energy to drive the compressor. Meanwhile, dehumidification systems with membranes can dehumidify humid air without increasing the dry bulb temperature. Therefore. they don't have to consume cooling energy. In this paper, the installation conditions for a membrane system were analyzed to improve the shape and optimum performance of the system. The results showed that the distance between elements was the critical system design factor, and that a distance of 20 mm was the optimal condition for the pressure drop and flow characteristics of the internal air flow.

An Experimental Study on the Optimization of Performance Parameter for Membrane Based Dehumidification and Air Conditioning System (분리막 제습공조 시스템의 성능변수 최적화를 위한 실험적 연구)

  • Jang, Jeachul;Kang, Eun-Chul;Jeong, Siyoung;Park, Seong-Ryong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.2
    • /
    • pp.75-80
    • /
    • 2016
  • There are three types of dehumidification systems : refrigeration dehumidification method, desiccant dehumidification method and hybrid dehumidification method. The first method involves removing moisture by condensation below the dew point, the second method involves absorption by a desiccant material and the last is an integration method. However, the refrigeration dehumidification system consumes too much power and controlling the humidity ratio is difficult. The desiccant dehumidification system uses less power but it has problems of environmental pollution. The hybrid dehumidification system has the disadvantage of a high initial cost. On the other hand, the energy consumption of the membrane based dehumidification system is lower than for the refrigeration dehumidification system. Also, it is an environmentally friendly technology. In this study, the performance parameters are evaluated for the dehumidification system using a hollow fiber membrane. Available area, duct side dry-bulb temperature, sweep gas flux (flow rate) and LMPD (Log Mean Pressure Difference) were used as the performance parameters.

Comparison of Condenser Characteristics using R134a and R22 under the Same Inlet Temperature Condition (동일한 유입온도조건에서 R134a와 R22 적용 응축기의 특성비교)

  • Kang, Shin-Hyung;Byun, Ju-Suk;Kim, Chang-Duk
    • Journal of Energy Engineering
    • /
    • v.15 no.3 s.47
    • /
    • pp.166-173
    • /
    • 2006
  • R134a is considered as an alternative refrigerant to R22 for air conditioners. An experimental investigation was made to study the characteristics of the heat transfer and pressure drop for R134a flowing in a fin-and-tube heat exchanger used for commercial air-conditioning units. Experiments were carried out under the conditions of inlet refrigerant temperature of $60^{\circ}C$ and refrigerant mass fluxes of $150,\;200,\;and\;250\;kg/m^{2}s$. The inlet air has dry bulb temperature or $35^{\circ}C$, relative humidity of 40% and air velocity varying from 0.68 to 1.6 m/s. Experiments show that air velocity decreased by 5.9% is needed for R134a than that of R22 while pressure drop for R134a was $18.1{\sim}20.4%$ higher than that of R22 for the degree of subcooling $5^{\circ}C$. The results are useful in designing more compact and effective condensers for various refrigeration and air conditioning systems using refrigerant R134a.