• Title/Summary/Keyword: drugs

Search Result 6,473, Processing Time 0.045 seconds

Changes of the blood chemistry, lipid and protein components in blood and liver tissue of the rat after oral combined administration of caffeine, iron and vitamin E (Caffeine, 철분 및 vitamin E 혼합투여시 rat의 혈액과 간조직내에서 혈액화학성분과 지질 및 단백질 구성성분의 변화)

  • Do, Jae-cheul;Huh, Rhin-sou
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.3
    • /
    • pp.577-598
    • /
    • 1996
  • This study was conducted to identify the effects of caffeine or combinations of caffeine and iron or vitamin E on the lipid and protein components or blood chemistry levels of the serum as well as the total homogenate, mitochondrial and microsomal fraction of the rat(Sprague-Dawley, female) liver. Chronic test were conducted to determine those effects. The chronic test was conducted by dividing rats into 5 groups according to the type of drugs and dosages administrated as follows; the control(group A), and group B was given 25mg/kg caffeine orally once daily for 30 days, group C was given 50mg/kg caffeine orally once daily for 30 days, group D was given 25mg/kg caffeine and orally ferric chloride once daily for 30 days and group E was given 25mg/kg caffeine and 25mg/kg vitamin E once daily for 30 days. The concentrations of glucose, urea nitrogen, uric acid, creatinine, total protein, albumin, A/G ratio, triglyceride, total cholesterol, HDL-cholesterol, free fatty acid, phospholipid as well as the activities of alanine aminotransferase(ALT), aspartate aminotransferase(AST) and alkaline phosphatase(ALP) were measured in the serum of each experimental groups. The concentrations of the carbonyl group and malondiaidehyde(MDA) and the patterns of the SDS-PAGE(Sodium Dodecyl Sulfate - Polyacrylamide Gel Electrophoresis) and fatty acid compositions in free fatty acids and phospholipids were analyzed to determine the oxidative damages and metabolic changes on the lipid and protein components in the serum, and total homogenate, mitochondrial and microsomal fractions of the rat liver. The results obtained from this study were summarized as follows; 1. Body weights of groups B, C, D and E were significantly decreased(p < 0.01) in comparison with that of the control in the chronic test. 2. The concentrations of serum glucose in groups B(124.5mg/dl), C(130.1mg/dl), D(122.1mg/dl), E(119.3mg/dl) were significantly higher(p < 0.01) in comparison to that of the control(101.5mg/dl). But, there were no significant differences in the concentrations of urea nitrogen, uric acid, creatinine, total protein, albumin and A/G ratio in comparison to that of the control. 3. The concentrations of total cholesterol and HDL-cholesterol in serum of groups B(69.6, 53.4mg/dl), C(73.0, 56.3mg/dl), D(68.9, 51.1mg/dl) and E(68.2, 51.3mg/dl) were significantly higher(p < 0.01) in comparison to that of the control(52.6, 38.8mg/dl). On the other hand, the concentrations of triglyceride in serum of groups B(45.0mg/dl), C(40.4mg/dl), D(33.8mg/dl) and E(47.2mg/dl) were significantly lower(p < 0.01) in comparison to that of the control(66.2mg/dl). There were no significant differences in the activities of ALT, AST and ALP in comparison to that of the control. 4. The concentrations of free fatty acid and phospholipid in serum of groups B(45.7, 154.4mg/dl), C(50.0, 167.2mg/dl), D(52.5, 148.4mg/dl) and E(41.1, 159.2mg/dl) were higher(p < 0.01) in comparison to that of the control(35.2, 125.3mg/dl). And the concentrations of the carbonyl group and malondialdehyde in serum of group D(1.82, 0.52nM/mg protein) were significantly higher(p < 0.01) in comparison to the control(1.53nM/mg protein). 5. The concentrations of carbonyl group in total homogenate, mitochondrial and microsomal fraction of group D(1.45, 0.94, 1.67nM/mg protein) were significantly higher (p < 0.01) in comparison to the control(1.16, 0.66, 1.27nM/mg protein). And the concentrations of malondialdehyde in the total homogenate, mitochondrial and microsomal fraction of group D(6.70, 6.10, 1.36nM/mg protein) were significantly higher(p < 0.01) in comparison to the control(5.17, 3.64, 0.68nM/mg protein). 6. As the analytical results of the fatty acid compositions of free fatty acid in serum, the proportions of stearic acid and arachidonic acid of groups B(16.52, 12.62%), C(17.52, 15.18%), D(19.73, 13.47%) and E(17.62, 13.28%) were significantly higher(p < 0.01) in comparison to the control(14.75, 7.88%), but the proportions of oleic acid and linoleic acid of groups B(12.97, 32.59%), C(10.88, 31.23%), D(12.37, 30.66%) and E(11.95, 32.41%) were significantly lower(p < 0.01) in comparison to the control(16.44, 35.12%). Otherwise, as the results of the fatty acid compositions of phospholipid in serum, the proportions of stearic acid and arachidonic acid of groups B(39.37, 16.39%), C(40.63, 17.83%), D(42.73, 15.39%) and E(39.16, 15.70%) were significantly higher(p < 0.01) in comparison to the control(37.74, 14.24%), but the proportions of oleic acid and linoleic acid of groups B(4.03, 14.38%), C(3.54, 12.38%), D(4.52, 11.68%) and E(4.29, 13.64%) were significantly lower(p < 0.01) in comparison to the control(5.53, 16.14%). 7. As the analytical results of the fatty acid compositions of free fatty acid in total homogenate, mitochondrial and microsomal fraction of liver, the proportions of oleic acid of groups B(7.8**, 8.73**, 6.88%) and C(6.89**, 7.75**, 6.58%) were lower(**:p < 0.01) in comparison to the control(8.67, 10.08, 7.81%), but the proportions of arachidonic acid of group C(22.62, 19.79, 23.71%) were significantly higher(p < 0.01) in comparison to the control(20.93, 18.47, 22.24%). And the proportions of palmitic acid of group D(25.95**, 26.16, 26.34**%) were significantly higher(**:p < 0.01) in comparison to the control(24.43, 25.42, 23.34%). In addition, the proportions of linoleic acid of group D(23.43, 25.02, 23.95%) were also significantly higher(p < 0.01) in comparison to the control(22.17, 23.75, 21.26%). The proportions of stearic acid of group D(19.87, 19.76**%) in mitochondrial and microsomal fraction were lower(**:p < 0.01) in comparison to the control(21.01, 24.18%), and the proportions of stearic acid of group E(16.71*, 19.65**%) in mitochondrial and microsomal fraction were significantly lower(**:p < 0.01, *:p < 0.05) in comparison to the control(21.01, 24.18%), and the proportions of linoleic acid of group E(25.04, 29.20, 26.48%) in total homogenate, mitochondria and microsome were significantly higher(p < 0.01) in comparison to the control(22.17, 23.75, 21.26%). 8. As the results of the fatty acid compositions of phospholipid in total homogenate, mitochondrial and microsomal fraction of liver, the proportions of palmitic acid of group D(17.58**, 18.78*, 18.23%**) were significantly higher(**:p < 0.01, *:p < 0.05) in comparison to the control(16.28, 17.22, 16.38%), and the proportions of stearic acid of group D(36.41, 37.23, 39.53%) were also significantly higher(p < 0.01) in comparison to the control(34.18, 34.16, 36.04%). But the proportions of oleic acid(3.41*, 3.11**, 3.12**%) and linoleic acid (18.03**, 15.79**, 14.74**%) of group D were significantly lower(**:p < 0.01, *:p < 0.05) in comparison to the control(oleic : 3.63, 3.72, 3.79%, linoleic : 20.03, 18.71, 18.48%). 9. In order to determine the oxidative damages to the protein in serum, mitochondrial and microsomal fraction of the rat liver, the patterns of the SDS-PAGE were identified, but the results of SDS-PAGE were not significantly different between the control and experimental groups.

  • PDF

Pharmacokinetic Study of Isoniazid and Rifampicin in Healthy Korean Volunteers (정상 한국인에서의 Isoniazid와 Rifampicin 약동학 연구)

  • Chung, Man-Pyo;Kim, Ho-Cheol;Suh, Gee-Young;Park, Jeong-Woong;Kim, Ho-Joong;Kwon, O-Jung;Rhee, Chong-H.;Han, Yong-Chol;Park, Hyo-Jung;Kim, Myoung-Min;Choi, Kyung-Eob
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.3
    • /
    • pp.479-492
    • /
    • 1997
  • Background : Isoniazid(INH) and rifampicin(RFP) are potent antituberculous drugs which have made tuberculous disease become decreasing. In Korea, prescribed doses of INH and RFP have been different from those recommended by American Thoracic Society. In fact they were determined by clinical experience rather than by scientific basis. Even there has been. few reports about pharmacokintic parameters of INH and RFP in healthy Koreans. Method : Oral pharmacokinetics of INH were studied in 22 healthy native Koreans after administration of 300 mg and 400mg of INH to each same person successively at least 2 weeks apart. After an overnight fast, subjects received medication and blood samples were drawn at scheduled times over a 24-hour period. Urine collection was also done for 24 hours. Pharmacokinetics of RFP were studied in 20 subjects in a same fashion with 450mg and 600mg of RFP. Plasma and urinary concentrations of INH and RFP were determined by high-performance liquid chromatography(HPLC). Results : Time to reach peak serum concentration (Tmax) of INH was $1.05{\pm}0.34\;hrs$ at 300mg dose and $0.98{\pm}0.59\;hrs$ at 400mg dose. Half-life was $2.49{\pm}0.88\;hrs$ and $2.80{\pm}0.75\;hrs$, respectively. They were not different significantly(p > 0.05). Peak serum concentration(Cmax) after administration of 400mg of INH was $7.14{\pm}1.95mcg/mL$ which was significantly higher than Cmax ($4.37{\pm}1.28mcg/mL$) by 300mg of INH(p < 0.01). Total clearance(CLtot) of INH at 300mg dose was $26.76{\pm}11.80mL/hr$. At 400mg dose it was $21.09{\pm}8.31mL/hr$ which was significantly lower(p < 0.01) than by 300mg dose. While renal clearance(CLr) was not different among two groups, nonrenal clearance(CLnr) at 400mg dose ($18.18{\pm}8.36mL/hr$) was significantly lower than CLnr ($23.71{\pm}11.52mL/hr$) by 300mg dose(p < 0.01). Tmax of RFP was $1.11{\pm}0.41\;hrs$ at 450mg dose and $1.15{\pm}0.43\;hrs$ at 600mg dose. Half-life was $4.20{\pm}0.73\;hrs$ and $4.95{\pm}2.25\;hrs$, respectively. They were not different significantly(p > 0.05). Cmax after administration of 600mg of RFP was $13.61{\pm}3.43mcg/mL$ which was significantly higher than Cmax($10.12{\pm}2.25mcg/mL$) by 450mg of RFP(p < 0.01). CLtot of RFP at 450mg dose was $7.60{\pm}1.34mL/hr$. At 600mg dose it was $7.05{\pm}1.20mL/hr$ which was significantly lower(p < 0.05) than by 450mg dose. While CLr was not different among two groups, CLnr at 600 mg dose($5.36{\pm}1.20mL/hr$) was significantly lower than CLnr($6.19{\pm}1.56mL/hr$) by 450mg dose(p < 0.01). Conclusion : Considering Cmax and CLnr, 300mg, of INH and 450mg RFP might be sufficient doses for the treatment of tuberculosis in Koreans. But it remains to be clarified in the patients with tuberculosis.

  • PDF

Effect of Ginseng on Visceral Nucleic Acid Content of Rats (고려인삼이 흰쥐의 장기조직 핵산 함유량에 미치는 영향)

  • Kim, Chul;Choi, Hyun;Kim, Chung-Chin;Kim, Jong-Kyu;Kim, Myung-Suk;Huh, Man-Kyung
    • The Korean Journal of Physiology
    • /
    • v.5 no.1
    • /
    • pp.23-42
    • /
    • 1971
  • I. Chemical analysis A study was planned to see if administration of ginseng extract has any influence upon the adrenal, the hepatic, the splenic, and the pancreatic nucleic acid contents of rats, and to estimate the effect of ACTH administration as a substitute for stress reaction upon these nucleic acid contents of rats previously primed with ginseng. Ninety male rats$(body\;weight:\;150{\sim}200gm)$ were divided into the ginseng, the saline, and the normal control groups, which received for 5 days 0.5ml/100 gm body weight of ginseng extract solution (4 mg of ginseng alcohol extract in 1 ml of saline), same amount of saline, or no medication, respectively. On the 5th experimental day, each of the 3 groups was further divided into 2 subgroups yielding the ginseng, the ginseng-ACTIT, the saline, the saline-ACTH, the normal control, and the normal-ACTH subgroups. The ginseng, the saline, and the normal control subgroups were sacrificed 3 hours after the last medication, while the ginseng-ACTH, the saline·ACTH, and the normal-ACTH subgroups received ACTH(0.1 unit/subject) 1 hour after the last medication and were sacrificed after 1 more hour. The adrenal gland, the liver, the spleen and the pancreas of each rat were measured for RNA and DNA contents using the chemical method of Schmidt-Thannhauser-Schneider. Following results were obtained: 1. Adrenal RNA and DNA contents and RNA/DNA ratio were all significantly higher in the ginseng group compared with the values obtained from the normal control and the saline groups. Generally administration of ACTH reduced nucleic acid contents of the viscera examined. However, in the ginseng group the rate of decrease [(value of ginseng-ACTH subgroup-value of ginseng subgroup) x100/value of ginseng subgroup)] in adrenal RNA and DNA contents and in RNA/DNA ratio were more conspicuous than they were in the normal control and the saline groups. 2. Hepatic RNA and DNA contents and RNA/DNA ratio were all significantly less in the ginseng group than in the normal control and the saline groups. After ACTH, the rate of decrease in hepatic RNA, DNA, and RNA/DNA ratio of the ginseng· group was less conspicuous than those of the other 2 groups. 3. With regard to the splenic nucleic acid contents, the RNA and the RNA/DNA values of the ginseng group were higher than those of the normal control group but lower than those of the saline group, while the DNA value of the ginseng group was lower than that of the normal control group but higher than that of the saline group. Following administration of ACTH, the rate of decrease in RNA and DNA contents and in RNA/DNA ratio of the ginseng group was more conspicuous than that of the normal control group but less remarkable than that of the saline group. 4. Pancreatic RNA and DNA contents were notably lower in the ginseng group than in the normal control and the saline groups. However, the RNA/DNA ratio of the ginseng group was higher than that of the normal control and the saline groups.'After ACTH, the rate of decrease in pancreatic RNA and RNA/DNA ratio of the ginseng group was less than that of the normal. control group but more than that of the saline group, while the DNA content was actually increased in the ginseng group though it decreased in the normal control and the saline groups. Although the results are not clear enough for an accurate interpretation, they seem to indicate that ginseng exerts notable influence upon the RNA and DNA contents and the RNA/DNA ratio of the viscera stodied. On the whole the drug tends to increase the RNA and DNA contents and RNA/DNA ratio of the adrenal gland but seems to diminish the values of the other 3 viscera. In the early period following ACTH, ginseng facilitates the fall in RNA and DNA contents and RNA/DNA ratio of the adrenal gland, while it tends to reduce the fall in the values of the other viscera studied. II. Autoradiographic and histochemical analysis It was planned autoradiographically and histochemically to affirm and extend the results obtained in part I with regard to the chemically assessed change in the adrenal, the pancreatic, the hepatic and the splenic DNA and RNA contents under the influence of ginseng and ACTH. Fourty male mice (body weight: $18{\sim}20gm$) and 20 male rats were used. Each animal species was divided into the saline, the ginseng, the saline-ACTH, and the ginseng-ACTH groups according to the administered drugs. In the mice, the adrenal, the pancreatic, the splenic and the hepatic DNA-synthetic activity was assessed autoradiographically after administration of $^3H$-thymidine. In the rats, the RNA content of the above 4 organs was assessed histochemically after staining them with methylgreen pyronine. Following results were obtained: 1. Labeled cells were significantly more numerous in the adrenal cortex, the spleen and the liver of the ginseng group than in those of the saline group, although they were less numerous in the pancreas of the ginseng group than in the pancreas of the saline group. The adrenocortical, the pancreatic, the splenic and the hepatic tissues were stained with methylgreen pyronine more deeply in the ginseng group than in the saline group. 2. The adrenocortical, the pancreatic, the splenic and the hepatic tissues contained labeled cells less numerously in the saline-ACTH and the ginseng-ACTH group than in the saline and the ginseng groups. All these tissues were also stained with methylgreen pyronine less deeply in the saline-ACTH and the ginseng-ACTH groups than in the saline and the ginseng groups. 3. However, the adrenal cortex, the spleen, the pancreas, and the liver contained labeled cells more numerously in the ginseng-ACTH group than in the saline-ACTH group. the 4 tissues were stained with methylgreen pyronine more deeply in the ginseng-ACTH group than in the saline-ACTH group. It is inferred from the above results that though with exception, the ginseng mostly facilitates cellular synthesis of nucleic acids and mitigates reduction in nucleic acid content of tissues after administration of ACTH.

  • PDF