• 제목/요약/키워드: drug metabolizing activity

검색결과 92건 처리시간 0.024초

인삼이 간의 약물 대사 효소에 미치는 영향 (Effects of Ginseng on the Drug Metabolizing Enzymes)

  • 김낙두
    • 약학회지
    • /
    • 제28권1호
    • /
    • pp.29-33
    • /
    • 1984
  • The paper aimed to review the influences of ginseng on the metabolism of foreign substances and on the activity of hepatic drug metabolizing enzyme system in mouse or rat liver. It has been known that ginseng components reduces the motality rates and the toxic effects induced by foreign materials. Chronic pretreatment of mouse or rat with ginseng extract fractions or saponin caused the increase in the metabolism of foreign materials and the activity of drug metabolizing enzymes, such as cytochrome $P_{450}$, NADPH cytochrome C reductase and glucuronyl S-transferase in liver. Thus, it may be concluded that decrease in toxic effect of foreign substances by ginseng pretreatment may be partly related to the induction of drug metabolizing enzymes in liver.

  • PDF

비타민 A 및 $B_2$ 유도체의 Aminopyrine Demethylase 활성도에 대한 영향 (Effect of Vitamin A and $B_2$ Derivatives on Aminopyrine Demethylase Activity)

  • 이향우
    • 약학회지
    • /
    • 제28권1호
    • /
    • pp.53-59
    • /
    • 1984
  • Drug-metabolizing system which has the important role in drug metabolism is localized in smooth endoplasmic reticulum of hepatocytes and is composed of NADPH, NADPH-cytochrome $P_{450}$ reductase, cytochrome $P_{450}$ and others. It is well known that the enzyme system is induced by phenobarbital and methylcholanthrene. Lipid peroxidation is reaction of oxidative deterioration of polyunsaturated lipids. Formation of lipid peroxides in liver microsome has been found to produce degradation of phospholipid, which are major components of microsomal membrane. The relationship between the formation of lipid oxides and the activities of drug-metabolizing enzyme in the liver of rats was reported by several investigators. In this study the effect of riboflavin tetrabutylate, an antioxidant on lipid peroxidation, specially the relationship between lipid peroxidation and drug-metabolizing enzyme system was investigated. In addition the effect of vitamin A derivatives, such as retinoic acid and retinoid on the enzyme was also observed. Results are summarized as followings. 1) The pretretment with riboflavin tetrabutylate inhibited completely the lengthened sleeping time due to $CCl_{4}$ treatment. 2) The increase of TBA value was prevented by the pretreatment with riboflavin tetrabutylate. 3) The pretreatment with riboflavin tetrabutylate also prevented the decrease of drug-metabolizing enzyme caused by $CCl_{4}$. 4) Both retinoic acid and retinoid remarkably decreased the activity of aminopyrine demethylase. Pretreatment of riboflavin tetrabutylate, however, prevented inhibitory effect of retinoic acid on the enzyme activity.

  • PDF

향신료의 약물대사효소 CYP3A4 저해효과 (Inhibitory Effect of a Drug Metabolizing Enzyme CYP3A4 on Spices)

  • 차배천
    • 생약학회지
    • /
    • 제34권1호통권132호
    • /
    • pp.86-90
    • /
    • 2003
  • For the determination of inhibiting cytochrome P450(CYP)3A4 activity, an improvement HPLC method was established by using a new internal standard and solvent system. Moreover, CYP3A4 amount for a optimum reaction of enzyme was determined by a comparative study with a variety concentration of enzyme. Using a established method, inhibitory effect of CYP3A4 that is drug metabolizing enzyme Investigated on EtOAc extracts of 5-class spices. As a result of experiment, EtOAc extract of white pepper (Piper nigrum L.) showed strong inhibitory activity. On a continuous experiment, the fraction 2, 4 and 5 of while pepper extract showed remarkable inhibitory activity. Pipeline, a main constituent of pepper was not included in these fraction. It is suggested that major compounds for the inhibitory activity of white pepper may be other ingredient that is not piperine.

백지근(白芷根) 성분(成分)이 간(肝)의 약물대사효소활성(藥物代謝酵素活性)에 미치는 효과(效果) (Effect of the Constituents of Angelicae dahuricae Radix on Hepatic Drug Metabolizing Enzyme Activity)

  • 신국현;김옥남;우원식
    • 생약학회지
    • /
    • 제19권1호
    • /
    • pp.19-27
    • /
    • 1988
  • The hexane and ether extracts from the roots of Angelica dahurica caused a significant inhibition of hepatic drug-metabolizing enzyme (DME) activity. Through systematic fractionation by $SiO_2\;column$ and vacuum liquid chromatography monitoring by bioassays, three furanocoumarins, phellopterin, byakangelicin and tert-O-methylbyakangelicin were isolated as active principles. These components have biphasic responses, both inhibitory and inducing effects on DME system. Tert-O-methyl byakangelicin was found to have the strongest enzyme inhibitory potency.

  • PDF

산초의 약물대사효소 CYP3A4 저해 활성 (Inhibitory Activity of Drug-metabolizing Enzyme CYP3A4 of Zanthoxylum Peel)

  • 차배천
    • 생약학회지
    • /
    • 제50권3호
    • /
    • pp.159-164
    • /
    • 2019
  • Zanthoxylum Peel is widely used as a common spice for a variety of foods. In the orient, it has also been used as traditional agents for treating diseases such as indigestion. Recently, Zanthoxylum Peel has been reported to have anti-cancer activity, anti-microbial activity, and anti-inflammatory activity. Chemical components are known sanshool compounds and xanthoxylin. In this study, we were carried out to investigate the constituents of inhibiting a drug metabolizing enzyme CYP3A4 from Zanthoxylum Peel. CYP3A4 is known as an enzyme involved in drug metabolism as monooxygenase containing the heme. As a result of experiment, we found that bergapten ($IC_{50}=18.21{\mu}M$) and quercetin ($IC_{50}=17.27{\mu}M$) isolated from EtOAc extract of Zanthoxylum Peel showed remarkable CYP3A4-inhibiting activities. Structures of the isolated active compounds were established by chemical and spectroscopic means.

콩보충식이가 생쥐의 해독효소계 및 Benzo(a)pyrene에 의해서 유도된 폐암발생에 미치는 영향 (Effect of Soybean Supplementation on Murine Drug-metabolizing Enzymes and Benzo(a)pyrene-induced Lung Cancer Develpoment)

  • 권정숙;김정상
    • 한국식품과학회지
    • /
    • 제31권2호
    • /
    • pp.535-539
    • /
    • 1999
  • 콩은 항에스트로젠효과와 항암효과를 가지는 것으로 나타나 최근 많은 관심의 대상이 되고 있다. 콩의 전립선암과 유방암 억제 기작으로 항에스트로젠 효과와 항안드로젠 효과가 보고되었지만 다른 조직에서 발현되는 항암활성 특히 화학적으로 유도되는 발암의 억제기작에 대해서는 아직 분명히 밝혀진 바가 없다. 본 연구에서는 콩이 생식기관이외에도 항암활성을 나타내리라 가정하고 그 기작을 규명하고자 하였다. 콩의 메탄올추추출물의 산가수분해물은 생쥐의 폐에서 항암효소계인 quinone reductase의 활성을 유의적으로 증가시켰으며 신장과 소장에서 1상효소계의 지표효소인 arylhydrocarbon hydroxylase효소활성을 억제하는 것으로 나타났다. 따라서 메탄올 추출물에 배당체로 존재하는 화합물이 산처리에 의하여 유리형으로 전환되면서 화학적 발암을 억제하는 활성을 획득하는 것으로 추정된다. 한편 benzo(a)pyrene으로 위암과 폐암을 유발시켰을 때, 콩추출물 첨가 식이는 폐암 발생을 현저히 낮추는 것으로 확인되었다. 이렇듯 화학적발암에 대한 콩 추출물의 방어효과는 약물대사효소계의 조절과 관련이 있는 것으로 추정된다.

  • PDF

Effects of Lignans on Hepatic Drug-Methabolizing Enzymes

  • Shin, Kuk-Hyun;Woo, Won-Sick;Lee, Jung-Yun;Han, Yong-Bong
    • Archives of Pharmacal Research
    • /
    • 제13권3호
    • /
    • pp.265-268
    • /
    • 1990
  • The effects of lignans, related to macelignan, on hepatic microsomal drug-metabolizing enzyme (DME) activity were evaluated to elucidate the structure-activity relationship in mice and rats. The compounds carrying the methylenedioxyphenyl nucleus were found to be the msot potent among compounds tested; which not only produced a marked inhibition of DME with a single dose but a significant induction with repeated treatments. Lack of the methylenedioxy group caused marked decrease in the activity, implying that a methylenedioxy group is essential and of major importance eliciting DME modifying activity.

  • PDF

Riboflavin Tetrabutylate가 약물대사 효소 및 지질 과산화효소에 미치는 영향 (Effect of Riboflavin Tetrabutylate on the Activity of Drug Metabolizing Enzyme and Lipid Peroxidation in Liver Microsomes of Rats)

  • 이향우;김원준;홍사석;곽창열;홍사오
    • 대한약리학회지
    • /
    • 제16권2호
    • /
    • pp.45-53
    • /
    • 1980
  • Lipid peroxidation in vitro has been identified as a basic deteriorative reaction in cellular mechanism of aging processes, such as air pollution oxidant damage to cell and to the lung, chlorinated hydrocarbon hepatotoxicity. Many experimental evidences were reported by several investigators that lipid peroxidation could be one of the principle causes for the hepatotoxicity produced by $CCl_4$. It is now reasonably established that $CCl_4$ is activated to a free radical in vivo, that lipid peroxidation occurs very quickly in microsomes prepared from damaged livers, that the peroxidation is associated with loss of enzyme activity of microsomes, and that various antioxidants can protect animals against the hepatotoxic effect of $CCl_4$. Recent studies have drawn attention to some other feature of microsomal lipid peroxidation. Incubation of liver microsomes in the presence of NADPH has led to a loss of cytochrome $P_{450}$. However, the presence of an antioxidant prevented lipid peroxidation and preserved cytochrome $P_{450}$. Decrease of cytochrome $P_{450}$ in microsomes under in vitro incubation can be enhanced by $CCl_4 and these changes were parallel to a loss of microsomal polyunsaturated fatty acid and formation of malonaldehyde. The primary purpose of this experiment was to study the effect of riboflavin tetrabutylate on lipid peroxidation, specially, the relationship between lipid peroxidation and drug metabolizing enzyme system which is located in smooth endoplasmic recticulum as well as the effect of ritoflavin tetrabutylate on drug metabolizing enzyme system of animal treated with $CCl_4$. Albino rats were used for experimental animal. In order to induce drug metabolizing enzyme system, phenobarbital was injected intraperitoneally. $CCl_$ and riboflavin tetrabutylate were given intraperitoneally as solution in olive oil. Microsomal fraction was isolated from liver of animals and TBA value as well as the activity of drug metabolizing enzyme were measured in the microsomal fractions. The results are summerized as following. 1) The secobarbital induced sleeping time of $CCl_4$ treated rat was about 2 times longer than that of the control group. However, the pretreatment with riboflavin tetrabutylate inhibited completely the lengthened sleeping time due to $CCl_4$ treatment. Furthermore TBA value was significantly increased in $CCl_4$ treated rat in comparison to control group tut the increase of TBA value was prevented by the pretreatment with riboflavin tetrabutylate. On the other hand, the activity of hepatic drug metabolizing enzyme was decreased in $CCl_4$ group, however, the pretreatment with riboflavin tetrabutylate also prevented the decrease of the enzyme activity caused by $CCl_4$. 2) The effect of riboflavin tetrabutylate on TBA value and the activity of drug metabolizing enzyme in vitro was similar to in vivo results. Incubation of liver microsome from rat in the presence of $CCl_4$, $Fe^{++}$, or ascorbic acid has led to the marked increase of TBA value, however, the addition of riboflavin tetrabutylate in incubation mixture prevented significantly the increase of TBA value, suggesting the inhibition of lipid peroxidation. In accordance with TBA value, the activity of drug metabolizing enzyme was inhibited in the presence of $CCl_4$, $Fe^{++}$, ascorbic acid but the addition of riboflavin tetrabutylate protected the loss of the enzyme activity in microsome under in vitro incubation.

  • PDF

랫트에서 이염화메탄 일회투여가 약물대사활성에 미치는 영향 (Effect of a Single Dichloromethane Administration on Drug Metabolizing Activity in Rats)

  • 윤혜은;김상겸;이희승;김영철
    • Toxicological Research
    • /
    • 제12권2호
    • /
    • pp.265-270
    • /
    • 1996
  • Effects of a single administration of dichloromethane (DCM) on the hepatic drug metabollzing activity were determined using adult female rats. Rats were treated with DCM (3 mmol/kg, ip) and the disappearance of antipyrine (100 mg/kg, iv) or ethanol (2 g/kg, ip) from blood was measured. The blood concentration and half-life of antipyrine was not influenced by DCM administration. And DCM did not alter the blood concentration of ethanol measured for 240 min after the treatment. The effect of DCM treatment on in vitro cytochrome P-450-dependent enzyme activities was examined as well. No significant difference in either aniline hydroxylase or aminopyrine N-demethylase was observed in hepatic microsomal fractiorts of rats treated with DCM 24 hr prior to sacrifice. The present study indicates that acutely given DCM does not alter the metabolism of xenobiotics in vivo. The failure of DCM to alter the in vitro hepatic microsomal drug metabolizing activity was also noted.

  • PDF

Toxicological Studies on the Essential Oil of Eugenia caryophyllata Buds

  • Park, Hee-Juhn
    • Natural Product Sciences
    • /
    • 제12권2호
    • /
    • pp.94-100
    • /
    • 2006
  • The essential oil (EC-oil) obtained from the buds of Eugenia caryophyllata (Myrtaceae) was examined for its free radical-scavenging activity, cytotoxicity, and in vivo toxicity. To find the xenobiotic properties of EC-oil, serum thiobarbituric acid reactive substances (TBARS) level and hepatic drug-metabolizing enzyme activities were measured. It was found that EC-oil displayed xenobiotic properties like bromobenzene. The cytotoxicities of eugenol and of the EC-oil were greatly attenuated by the sulfhydryl-containing N-acetyl-L-cysteine (NAC), suggesting that eugenol was susceptible to nucleophilic sulfhydryl. In addition, eugenol also showed potent free radical-scavenging activity in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. Moreover, methyleugenol considerably exhibited less cytotoxicity and less potent free radical-scavenging activity than eugenol, and the cell viability of the methyleugenol was more increased with NAC treatment than the eugenol. These results indicate that the phenolic OH in eugenol may play a crucial role in both cytotoxicity and free radical-scavenging activity. The fashion on oxidative stress and hepatic drug-metabolizing enzyme activities of eugenol resembled those of bromobenznene.