• Title/Summary/Keyword: drug design

Search Result 598, Processing Time 0.026 seconds

Design and Optimization of Solid Dispersed Osmotic Pump Tablets of Aceclofenac, A Better Approach to Treat Arthritis

  • Edavalath, Sudeesh;Rao, B. Prakash
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.4
    • /
    • pp.217-225
    • /
    • 2011
  • The aim of this work was to prepare porous osmotic pump tablets for controlled delivery of Aceclofenac. Aceclofenac solid dispersion was prepared to improve the solubility by using the drug - carrier (Mannitol) ratio of 1:1. The osmotic pump tablets were prepared using the solid dispersed product of Aceclofenac. The formulation contains potassium chloride as osmotic agent, cellulose acetate as semipermeable membrane, poly ethylene glycol (PEG 4000) as pore former and sodium lauryl sulphate (SLS) as solubility enhancer. The formulations were designed by the general factors such as osmotic agent and pore former. All formulations were evaluated for various physical parameters and, the in vitro release studies were conducted as per USP. The drug release kinetic studies such as zero order, first order, and Higuchi and Korsmeyer peppas were determined and compared. All the formulations gave more controlled release compared to the marketed tablet studied. Numerical optimization techniques were applied to found out the best formulation by considering the parameter of in vitro drug release kinetics and dissolution profile standards. It was concluded that the porous osmotic pump tablets (F7) composed of Aceclofenac solid dispersion/Potassium chloride/Lactose/Sodium lauryl sulphate/Magnesium Stearate (400/40/95/10/5, mg/tab) and coating composition with Cellulose acetate/ PEG 4000 (60/40 %w/w) is the most satisfactory formulation. The porous osmotic pump tablets provide prolonged, controlled, and gastrointestinal environment-independent drug release.

Multi-Layered Matrix Tablets with Various Tablet Designs and Release Profiles

  • Choi, Du-Hyung;Jeong, Seong-Hoon
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.5
    • /
    • pp.263-272
    • /
    • 2011
  • Tablet dosage forms have been preferred over other formulations for the oral drug administration due to their low manufacturing costs and ease of administrations, especially controlled-release applications. Controlled-release tablets are oral dosage forms from which the active pharmaceutical ingredient (API) is released over an intended or extended period of time upon ingestion. This may allow a decrease in the dosing frequency and a reduction in peak plasma concentrations and hence improves patient compliance while reducing the risk of undesirable side effects. Conventional singlelayered matrix tablets have been extensively utilized to deliver APIs into the body. However, these conventional single-layered matrix tablets present suboptimal delivery properties, such as non-linear drug delivery profiles which may cause higher side effects. Recently, a multi-layered technology has been developed to overcome or eliminate the limitations of the singlelayered tablet with more flexibility. This technology can give a good opportunity in formulating new products and help pharmaceutical companies enhancing their life cycle management. In this review, a brief overview on the multi-layered tablets is given focusing on the various tablet designs, manufacturing issues and drug release profiles.

A Randomized single blind controlled clinical trial on safety and efficacy of a Unani formulation (Itrifal-e-Sagheer) in dyslipidemia

  • Alam, Sazid;Alam, MD Anzar;Quamri, MA;Sofi, Ghulamuddin;Khan, Mohd. Qudratullah;Ansari, Shabnam
    • CELLMED
    • /
    • v.10 no.1
    • /
    • pp.8.1-8.7
    • /
    • 2020
  • Aim:'Itrifal-e-Sagheer', a compound Unani formulation has been indicated in disease conditions simulating dyslipidemia. The present study was done to substantiate the efficacy of 'Itrifal-e-Sagheer' in dyslipidemia on scientific parameters. Materials and methods: A randomized, single blind, controlled, clinical trial was carried out on 30 patients of dyslipidemia who were randomly allocated into test (n = 15) or control (n = 15) groups. The test drug, Itrifal-e-Sagheer and control drug, Abana® were given to respective group for 45 days along with lifestyle modification. Results: The test drug significantly alleviated the symptoms of subjective parameters (palpitation, breathlessness and weight gain) (p<0.05). There was statistically significant reduction in lipid profile of the patients in test group (p<0.05) than control drug treatment. Conclusion: The study evidenced that Itrifal-e-Sagheer is potentially effective and safe in the treatment of dyslipidemia. However, a multicentric study with robust study design is required to generalize the results.

Clinical Pharmacokinetic Profiles of Hanmi SMEDDS Silymarin Soft Capsule Preparation (한미 SMEDDS 실리마린 연질캅셀 제제의 임상약동학적 특성)

  • 박민수;유내춘;김경환
    • Biomolecules & Therapeutics
    • /
    • v.8 no.3
    • /
    • pp.269-275
    • /
    • 2000
  • Silibinin(silybin) is the active component of silymarin from Silybum marianum and has hepato-protective effect. It is water-insoluble and has low bioavailability. To improve its bioavailability, self-micro-emulsifying drug delivery system (SMEDDS) has been developed by Hanmi Pharmaceutical Company (Silyma $n^{R}$ 140 soft capsule). In this study, the pharmacokinetic profiles of Silyma $n^{R}$ were examined and compared it with a reference preparation, L Caps140 of B Pharmaceutical Company. This study was approved by Yonsei University Severance Hospital IRB(approval No. CR0004) and followed the bioequivalence test guideline of Korean FDA. Eighteen healthy adult volunteers were allocated based on 2$\times$2 Latin square cross-over design. They were given 2 capsules (each contains silymarin 140 mg (60 mg as silibinin)) of either drug at each period and crossed over after a week of drug-free washout period. Blood concentration of silibinin was measured by HPLC. The $C_{max}$ and AUC of the Silyma $n^{R}$ were 1542.0 $\pm$ 402.7 ng/ml and 3323.3 $\pm$ 824.7 ng.h/ml, respectively, and were significantly higher than those of reference preparation. The Tmax was 0.8 $\pm$ 0.3 h and significantly shorter than reference preparation. The $K_{e}$ and $T_{1}$2/ of both drugs were comparable. Percent differences in means against reference preparation were +88.3% for AUC, +222.6% for $C_{max}$, and -61.1% for $T_{max}$./.>././.>./.

  • PDF

Applicator parts hub and cannula integrated mold technology and bonding strength analysis for retinal disease treatment (망막질환 치료를 위한 어플리케이터 허브와 캐뉼러 일체화 금형기술 및 접합강도 분석)

  • Jeong-Hyeon Yu;Yong-Dae Kim;Jeong-Won Lee
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.40-47
    • /
    • 2023
  • Macular degeneration and glaucoma are representative age-related retinal diseases that rank second and third in the prevalence of retinal diseases, and are a kind of degenerative neurological disease. Irreversible visual acuity and visual field damage may occur, and the number of patients is rapidly increasing as the population ages. Since this retinal disease is a chronic disease, continuous drug treatment is required. There are various drug delivery methods for treatment, but direct injection of the drug into the intravitreal is the most effective for continuous delivery of the drug over a long period of time. In order to solidify Dexamethasone, a retinal disease treatment, and insert it into the primary intravitreal, it is important to develop a technology to miniaturize the treatment and an applicator to deliver the treatment. In this study, a mold technology was developed to integrate the cannula and hub, which are one part of applicator. In addition, surface treatment was performed on the outside of the cannula to improve the bonding strength between the cannula and the hub, and the bonding strength according to each condition was analyzed through a tensile test.

  • PDF

Preparation of Dexamethasone-21-palmitate Incorporated Lipid Nanosphere: Physical Properties by Varying Components and Ratio of Lipid (팔미틴산덱사메타손이 봉입된 지질나노입자의 제조: 지질종류와 함량에 따른 물리적 특성)

  • Jung, Suk-Hyun;Lee, Jung-Eun;Seong, Ha-Soo;Shin, Byung-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.6
    • /
    • pp.355-361
    • /
    • 2006
  • Intraarticular corticosteroid injections for therapy of rheumatic arthritis are administered with the aim of optimal local anti-inflammatory effect at the injection site. Since the side effects of corticosteroidal drug, dexamethasone(DEX), administered at hish dose limited the therapeutic efficacy, there was a need to design a new drug delivery system for controlled release of dexamethasone. As a prodrug for continuous therapeutic efficacy, dexamethasone-21-palmitate(DEX-PAL) was prepared via esterification of palmitoyl chloride and dexamethasone. DEX-PAL was identified by NMR and MASS analysis. DEX-PAL or DEX was entrapped in lipid nanosphere which could be prepared by using a self emulsification-solvent evaporation method. Physicochemical characteristics such as mean particle diameter, zeta potential and drug loading efficiency of the lipid nanospheres were investigated with variation of either the kind of lipid or the lipid composition. The lipid nanospheres had a mean diameter $83{\sim}95$ nm and DEX-PAL loading efficiency of up to 95%. The drug loading efficiency increased with the increase of aliphatic chain length attached to the phospholipid. The incorporation of cationic lipid was very efficient for both reducing particle size of lipid nanospheres and enhancing drug loading efficiency. The lipid nanospheres containing DEX-PAL may be a promising novel drug carrier for the controlled release of the poorly water-soluble drugs.

Development and Effectiveness of a Drug Dosage Calculation Training Program using Cognitive Loading Theory Based on Smartphone Application (인지부하이론을 적용한 약물계산훈련용 스마트폰 어플리케이션의 개발 및 효과)

  • Kim, Myoung Soo;Park, Jung Ha;Park, Kyung-Yeon
    • Journal of Korean Academy of Nursing
    • /
    • v.42 no.5
    • /
    • pp.689-698
    • /
    • 2012
  • Purpose: This study was done to develop and evaluate a drug dosage calculation training program using cognitive loading theory based on a smartphone application. Calculation ability, dosage calculation related self-efficacy and anxiety were measured. Methods: A nonequivalent control group design was used. Smartphone application and a handout for self-study were developed and administered to the experimental group and only a handout was provided for control group. Intervention period was 4 weeks. Data were analyzed using descriptive analysis, ${\chi}^2$-test, t-test, and ANCOVA with the SPSS 18.0. Results: The experimental group showed more 'self-efficacy for drug dosage calculation' than the control group (t=3.82, p<.001). Experimental group students had higher ability to perform drug dosage calculations than control group students (t=3.98, p<.001), with regard to 'metric conversion' (t=2.25, p =.027), 'table dosage calculation' (t=2.20, p =.031) and 'drop rate calculation' (t=4.60, p<.001). There was no difference in improvement in 'anxiety for drug dosage calculation'. Mean satisfaction score for the program was 86.1. Conclusion: These results indicate that this drug dosage calculation training program using smartphone application is effective in improving dosage calculation related self-efficacy and calculation ability. Further study should be done to develop additional interventions for reducing anxiety.

Pharmacokinetics and Bioequivalence of Haloperidol Tablet by Liquid Chromatographic Mass Spectrometry with Electrospray Ionization

  • Yun Min-Hyuk;Kwon Jun-Tack;Kwon Kwang-il
    • Archives of Pharmacal Research
    • /
    • v.28 no.4
    • /
    • pp.488-492
    • /
    • 2005
  • The purpose of this study is to investigate the bioequivalence of two haloperidol 5 mg tablets, Myung In haloperidol (Myung In Pharm. Co., Ltd., test drug) and $Peridol^{R}$(Whanin Pharm. Co., Ltd., reference drug), and also to estimate the pharmacokinetic parameters of haloperidol in Korean volunteers. The bioavailability and pharmacokinetics of haloperidol tablets were examined on 24 healthy volunteers who received a single oral dose of each preparation in the fasting state in a randomized balanced 2 way crossover design. After an oral dosing, blood samples were collected for a period of 60 h. Plasma concentrations of haloperidol were determined using a liquid chromatographic electrospray mass spectrometric (LC-MS) method. The pharmacokinetic parameters were calculated with noncompartmental pharmacokinetic analysis. The geometric means of $AUC_{0-60h} and C_{max}$ between test and reference formulations were $17.21\pm8.26 ng\cdot/mL vs 17.31\pm13.24 ng\cdot/mL and 0.87\pm0.74 ng/mL vs 0.85\pm0.62 ng/mL$. respectively. The $90\%$ confidence intervals of mean difference of logarithmic transformed $AUC_{0-60h} and C_{max} were log0.9677{\sim}log1.1201 and log0.8208{\sim}log1.1981$, respectively. It shows that the bioavailability of test drug is equivalent with that of reference drug. The geometric means of other pharmacokinetic parameters ($AUC_{inf}. t_{1/2}, V_{d}/F, and CL/F$) between test drug and reference drug were $21.75\pm8.50 ng{\cdot}h/mL vs 21.77\pm15.63 ng{\cdot}h/mL, 29.87\pm8.25 h vs 29.60\pm7.56 h, 11.51\pm5.45 L vs 12.90\pm6.12 L and 0.26\pm0.09 L/h vs 0.31\pm0.17 L/h$, respectively. These observations indicate that the two formulation for haloperidol was bioequivalent and, thus, may be clinically interchangeable.

Bioequivalency on the Comparative Bioavailability of Two Capsule Formulations of Cefixime in Human Volunteers (지원자의 Cefixime캅셀제 생체이용율에 대한 생물학적동등성 연구)

  • Kang, Won Ku;Woo, Jong Su;Kwon, Kwang Il
    • Korean Journal of Clinical Pharmacy
    • /
    • v.8 no.1
    • /
    • pp.19-22
    • /
    • 1998
  • Cefixime is an orally absorbed 3rd generation cephalosporin with a broad spectrum of activity against Gram-positive and Gram-negative bacteria and is highly resistant to $\beta-lactamase$ degradation. This study was carried out to evaluate the bioavailability of a new test drug of cefixime (100 mg/capsule) relative to the reference drug. The bioavailability was conducted on 20 healthy volunteers who received a single dose (400 mg) of the test and the reference drugs in the fasting state, in a randomized balanced 2-way crossover design. After dosing, serial blood samples were collected for a period of 12 hours. Plasma was analyzed for cefixime by a sensitive and validated HPLC assay. The major pharmacokinetic parameters $(AUC_{0-12hr},\;C_{max},\;T_{max})$ were calculated from the plasma concentration-time data of each volunteer. The $AUC_{0-12hr},\;C_{max}\;and\;T_{max}$ of the test drug were $36.91\pm11.85\;{\mu}g{\cdot}hr/ml,\;5.47\pm1.61\;{\mu}g/ml,\;and\;4.00\pm0.65\;hr,$ respectively, and those of the reference drug were $34.08\pm8.81\;{\mu}g{\cdot}hr/ml,\;5.25\pm1.40\;{\mu}g/ml,\;and\;4.20\pm0.62\;hr$, respectively. Mean differences of those parameters were 8.32, 4.29, and $4.76\%$, respectively, and the least significant differences at $\alpha$=0.05 for $AUC_{0-12hr},\;C_{max},\;T_{max}$ were 16.02, 13.78, and $11.76\%$, respectively. In conclusion, the test drug was bioequivalent with the reference drug.

  • PDF

Bioequivalence of GomcillinTM Capsule to FamoxinTM Capsule (Amoxicillin 500 mg) (파목신 캅셀(아목시실린 500 mg)에 대한 곰실린 캅셀의 생물학적동등성)

  • Lee, Yun-Young;Choi, Mee-Hee;Lee, Kyung-Ryul;Lee, Hee-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.4
    • /
    • pp.311-317
    • /
    • 2004
  • A bioequivalence study of $Gomcillin^{TM}$ capsules (DAEWOONG Pharmaceutical Co., Korea) to $Famoxin^{TM}$ capsules (Dong Wha Pharm. Ind. Co., Korea) was conducted according to the guideline of Korea Food and Drug Administration (KFDA). Twenty four healthy male Korean volunteers received each medicine at the amoxicillin dose of 500 mg in a $2{\times}2$ crossover study. There was a one-week wash out period between the doses. Plasma concentrations of amoxicillin were monitored by a high-performance liquid chromatography for over a period of 8 hours after the administration. $AUC_t$ (the area under the plasma concentration-time curve from time zero to 8 hr) was calculated by the linear trapezoidal rule method. $C_{max}$ (maximum plasma drug concentration) and $T_{max}$ (time to reach $C_{max}$) were compiled from the plasma concentration-time data. Analysis of variance was carried out using logarithmically transformed $AUC_t$ and $C_{max}$. No significant sequence effect was found for all of the bioavailability parameters indicating that the crossover design was properly performed. The 90% confidence intervals of the $AUC_t$ ratio and the $C_{max}$ ratio for $Gomcillin^{TM}/Famoxin^{TM}$ were $log0.91\;{\sim}\;log1.03$ and $;log0.93\;{\sim}\;log1.10$, respectively. These values were within the acceptable bioequivalence intervals of $log0.80\;{\sim}\;log1.25$. Thus, our study demonstrated the bioequivalence of $Gomcillin^{TM}$ and $Famoxin^{TM}$ with respect to the rate and extent of absorption.