• Title/Summary/Keyword: drug delivery time

Search Result 185, Processing Time 0.032 seconds

Curcumin-Loaded PLGA Nanoparticles Coating onto Metal Stent by Electrophoretic Deposition Techniques

  • Nam, So-Hee;Nam, Hye-Yeong;Joo, Jae-Ryang;Baek, In-Su;Park, Jong-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.397-402
    • /
    • 2007
  • Restenosis after percutaneous coronary intervention (PCI) continues to be a serious problem in clinical cardiology. To solve this problem, drug eluting stents (DES) with antiproliferative agents have been developed. Variable local drug delivery systems in the context of stenting require the development of stent manufacture, drug pharmacology and coating technology. We have worked on a system that integrates electrophoretic deposition (EPD) technology with the polymeric nanoparticles in DES for local drug delivery and a controlled release system. The surface morphology and drug loading amount of DES by EPD have been investigated under different operational conditions, such as operation time, voltage and the composition of media. We prepared poly-D,L-lactide-co-glycolic acid (PLGA) nanoparticles embedded with curcumin, which was done by a modified spontaneous emulsification method and used polyacrylic acid (PAA) as a surfactant because its carboxylic group contribute negative charge to the surface of CPNPs (?53.5 ± 5.8 mV). In the process of ‘trial and error' endeavors, we found that it is easy to control the drug loading amount deposited onto the stent while keeping uniform surface morphology. Accordingly, stent coating by EPD has a wide application to the modification of DES using various kinds of nanoparticles and drugs.

In Vitro Cellular Uptake and Cytotoxicity of Paclitaxel-Loaded Glycol Chitosan Self-Assembled Nanoparticles

  • Park, Ji-Sun;Cho, Yong-Woo
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.513-519
    • /
    • 2007
  • Self-assembled nanoparticles have great potential to act as vehicles for hydrophobic drug delivery. Understanding nanoparticle cellular internalization is essential for designing drugs intended for intracellular delivery. Here, the endocytosis and exocytosis of fluorescein isothiocyanate (FITC)-conjugated glycol chitosan (FGC) self-assembled nanoparticles were investigated by flow cytometry and confocal microscopy. The cellular internalization of FGC nanoparticles was initiated by nonspecific interactions between nanoparticles and cell membranes. Although adsorptive endocytosis of the nanoparticles occurred quickly, significant amounts of FGC nanoparticles were exocytosed, particularly in the early stage of endocytosis. The amount of exocytosed nanoparticles was dependent on the pre-incubation time with nanoparticles, suggesting that exocytosis is dependent on the progress of endocytosis. FGC nanoparticles internalized by adsorptive endocytosis were distributed in the cytoplasm, but not in the nucleus. In vitro cell cycle analysis demonstrated that FGC nanoparticles delivered paclitaxel into the cytoplasm and were effective in arresting cancer cell growth.

Fabrication of a Flexible Flap Valve for Drug Delivery Systems (약물 전달용 유연한 플랩 밸브의 제작)

  • Lim, In-Ho;Lee, Ki-Jung;Sim, Woo-Young;Yang, Sang-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.801-805
    • /
    • 2009
  • This paper reports on a flexible flap valve actuated by electromagnetic force under a constant pressure source. The flexible flap valve consists of the three main components: a flexible flap with a steel disk embedded in PDMS, an electromagnetic actuator and two glass plates with inlet and outlet. The flap valve is fabricated by SU-8 mold process, the EDM process and oxygen plasma treatment. The dimension of an assembled flap valve is $12[mm]{\times}20[mm]{\times}28[mm]$. The stroke volume of the flap valve is measured for various pressures. And the time of the applied input voltage is varied to change the open time of the valve. When the input voltage of 30[V] is applied for 0.25[s], the minimum stroke volume of the flap valve is $40[{\mu}L]$ at 70 [kPa].

Extracellular vesicles as novel carriers for therapeutic molecules

  • Yim, Nambin;Choi, Chulhee
    • BMB Reports
    • /
    • v.49 no.11
    • /
    • pp.585-586
    • /
    • 2016
  • Extracellular vesicles (EVs) are natural carriers of biomolecules that play central roles in cell-to-cell communications. Based on this, there have been various attempts to use EVs as therapeutic drug carriers. From chemical reagents to nucleic acids, various macromolecules were successfully loaded into EVs; however, loading of proteins with high molecular weight has been huddled with several problems. Purification of recombinant proteins is expensive and time consuming, and easily results in modification of proteins due to physical or chemical forces. Also, the loading efficiency of conventional methods is too low for most proteins. We have recently proposed a new method, the so-called exosomes for protein loading via optically reversible protein-protein interaction (EXPLORs), to overcome the limitations. Since EXPLORs are produced by actively loading of intracellular proteins into EVs using blue light without protein purification steps, we demonstrated that the EXPLOR technique significantly improves the loading and delivery efficiency of therapeutic proteins. In further in vitro and in vivo experiments, we demonstrate the potential of EXPLOR technology as a novel platform for biopharmaceuticals, by successful delivery of several functional proteins such as Cre recombinase, into the target cells.

Effects of scaling and root planing with or without a local drug delivery system on the gingival crevicular fluid leptin level in chronic periodontitis patients: a clinico-biochemical study

  • Meharwade, Vinayak Venkoosa;Gayathri, Gunjiganur Vemanaradhya;Mehta, Dhoom Singh
    • Journal of Periodontal and Implant Science
    • /
    • v.44 no.3
    • /
    • pp.118-125
    • /
    • 2014
  • Purpose: The present split mouth study evaluates the effect of nonsurgical periodontal treatment on the gingival crevicular fluid (GCF) leptin level in chronic periodontitis. Methods: Ninety sites from 30 nonobese chronic periodontitis patients were selected and divided as follows: group I, 30 healthy sites receiving no treatment; group II, 30 periodontitis sites receiving scaling and root planing (SRP); and group III, 30 periodontitis sites receiving SRP with tetracycline local drug delivery. At baseline, after GCF sampling and clinical parameter recording, the assigned treatment was performed for the study groups. During recall visits, GCF sampling followed by clinical parameter recording was done for groups II and III. Results: Reductions in the probing depth and the clinical attachment level (CAL) were highly significant at different time intervals (except between day 0 and 45) in both groups II and III. Upon comparison, group III showed significant gain in CAL between day 0 and 15 and between day 0 and 45. After treatment, the reduction in the GCF leptin level was more significant in group III than in group II at day 15 but re-elevated almost to the pretreatment levels at day 45. Conclusions: Nonsurgical periodontal therapies were not effective in maintaining stable reduction in the GCF leptin level during the study period.

Effects of a Full Body Massage on Uterine Contraction, Length of Labor, Type of Delivery, and Drug Intervention for Primipara during Labor (분만 중 전신마사지가 초산부의 자궁수축, 분만소요시간, 분만형태 및 약물사용에 미치는 효과)

  • Lee, Kun-Ja;Chang, Chun-Ja;Jo, Hyun-Sook;Kim, Mi-Ran
    • Women's Health Nursing
    • /
    • v.8 no.4
    • /
    • pp.538-549
    • /
    • 2002
  • This study was designed to test the effects of a full body massage on uterine contraction, length of labor, type of delivery, and drug intervention for primipara during labor. Data were collected using a quasi-experiment method (nonequivalent control group, pre-post test design) from November 1, 2001 to July 31, 2002. The subjects of this experiment consisted of 28 women in the experimental group and 29 in the control group, out of 57 primipara hospitalized at the U OB & GYN hospital in Inchon. The experimental group was given a 20 minute full body massage for each of the three delivery phases (latent, active, and transition). The control group was given conventional delivery care. Three (3) parameters were analyzed in this experiment. (1) The interval, duration, and strength of uterine contraction, using an electric tocodynamometer (2) The elapsed time for stage 1 and stage 2 labor. (3) The types of deliveries and drug interventions, using postpartum medical records The data collected were analyzed using the repeated measures analysis of variance (ANOVA), t-test, and $x^2$ test of the SPSS program. The results of the experiment are as follows: 1) Uterine contraction interval was significantly reduced (F=3.210, p=.050). Duration of uterine contraction showed significant increase only during the transition phase (t=-2.319, p=.023). Strength of uterine contraction showed no significant difference. 2) Total length of labor was significantly shortened (t=-5.245, p=.000). The length of 1st stage labor was significantly shortened (t=-5.164, p=.000), with latent phase showing (t=-4.709, p=.000), active phase (t=-2.973, p=.005), and transition phase (t=-2.031, p=.047). The length of 2nd stage labor showed no significant difference. 3) The number of natural deliveries were significantly increased ($x^2$=13.127, p=.004). 4) The number of drug interventions were significantly fewer ($x^2$= 4.493, p=.034). In conclusion, this study shows that a full body massage has a significantly positive effect on uterine contraction interval, length of labor, type of delivery, and drug intervention. Therefore, this study suggests that a full body massage be used clinically to help primipara during labor.

  • PDF

Effects of Anticancer Drug Delivery based on Microbubble and Microbubble-Nanoparticle Complex using Low-Intensity Focused Ultrasound in Breast Cancer Animal Model (유방암 동물모델에서의 저강도 집속초음파를 이용한 마이크로버블 및 마이크로버블-나노물질 복합체 기반 항암제 전달 효율 검증)

  • Baek, Hee Gyu;Ha, Shin-Woo;Huh, Hyungkyu;Jung, Byeongjin;Han, Mun;Moon, Hyungwon;Kim, Sangkyun;Lee, Hak Jong;Park, Juyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.39-47
    • /
    • 2019
  • Ultrasound sonication along with microbubble (MB) could enhance drug delivery to promote the absorption of anticancer drugs into cancers in a noninvasive and targeted manners. In this study, we verify the acute drug delivery enhancement (within an hour) of two representative focused ultrasound driven drug delivery enhancement methods (MB and Doxorubicin-coated Nanoparticle complex (MB-NP) based). Experiments were conducted using in vivo mouse model with MDA-MB-231 breast cancer cell line. Ultrasound generated by single-element 1 MHz focused ultrasound transducer was delivered in pulsed sonication consisted of 0.125 msec bursts at a pulse repetition frequency of 2 Hz for 20 seconds without a significant increase in local temperature (less than $0.1^{\circ}C$) or hemorrhage. Doxorubicin concentrations in tumors were improved by 1.97 times in the case of MB-NP, and 1.98 times by using Doxorubicin and MB separately. These results indicate anticancer drug delivery based on MB and MB-NP can significantly improve the effect of anticancer drugs delivered to tumors in a short time period by using low-intensity focused ultrasound.

Development of Specific Organ-Targeting Drug Delivery System (III)-In Vitro Study on Liver-Targeting Adriamycin Delivery System using Human Serum Albumin Microspheres- (장기표적용 약물수송체의 개발에 관한 연구(제 3보 -알부민 미립구를 이용한 Adriamycin의 간 표적용 수송체에 관한 in vitro 연구-)

  • Kim, Chong-Kook;Hwang, Sung-Joo;Yang, Ji-Sun
    • Journal of Pharmaceutical Investigation
    • /
    • v.19 no.4
    • /
    • pp.195-202
    • /
    • 1989
  • In attempt to improve the chemotherapeutic activity of adriamycin, adriamycin-entrapped HSA microspheres were prepared and investigated by the various in vitro experiments. The shape, surface characteristics and size distribution of HSA microspheres are observed by scanning electron microscopy. The in vitro drug release, albumin matrix degradation by protease of HSA microspheres were studied. The shape of HSA microspheres were spherical and the surface was smooth and compact. The size of HSA microspheres ranged from 0.4 to $2.5\;{\mu}m$ and have average diameters of 0.5 to $0.7\;{\mu}m$. The size distribution of HSA microspheres prepared by ultrasonication was mainly affected by albumin concentration and heating time in the process of hardening. In in vitro, almost all adriamycin was released from HSA microspheres for 8 hr. Analysis of the resulting adriamycin release profiles demonstrated that adriamycin is released from the microspheres in two distinct steps, a fast phase (until 30 min) followed by a much slower sustained release phase. Drug release, which is due to diffusion, was depended on the rate of matrix hydration. Drug release was largely affected by albumin concentration and heating temperature during the process of hardening. Albumin matrix degradation of HSA microspheres was affected by heating temperature and albumin concentration. Higher temperature and longer times generally produce harder, less porous, and slowly degradable microspheres.

  • PDF

Release of Calcein from Temperature-Sensitive Liposomes in a Poly(N-isopropylacrylamide) Hydrogel

  • Han Hee Dong;Kim Tae Woo;Shin Byung Cheol;Choi Ho Suk
    • Macromolecular Research
    • /
    • v.13 no.1
    • /
    • pp.54-61
    • /
    • 2005
  • We prepared temperature-sensitive liposomes (TS-liposomes) modified with a thermo sensitive polymer, such as poly(N-isopropylacrylamide) (PNIPAAm), to increase the degree of drug release from liposomes at the hyperthermic temperature. A PNIPAAm hydrogel containing TS-Iiposomes was also prepared to obtain a hydrogel complex at body temperature. In addition, a depot system for local drug delivery using the polymer hydrogel was developed to enhance therapeutic efficacy and prevent severe side effects in the whole body. The PNIPAAm-mod­ified TS-liposome was fixed into the PNIPAAm hydrogel having a high temperature-sensitivity. The release behavior of calcein, a model drug, from TS-liposomes in the PNIPAAm hydrogel was then initiated by external hyperthermia; the results indicated that sustained release as a function of temperature and time was caused by the thermosensitivity of the liposome surface and diffusion of the drug into the PNIPAAm hydrogel. Our results indicated that TS-liposomes in a PNIPAAm hydrogel represented a plausible system for local drug delivery.

Enhanced Transdermal Delivery of Pranoprofen from the Bioadhesive Gels

  • Shin, Sang-Chul;Cho, Cheong-Weon
    • Archives of Pharmacal Research
    • /
    • v.29 no.10
    • /
    • pp.928-933
    • /
    • 2006
  • Percutaneous delivery of NSAIDs has advantages of avoiding hepatic first pass effect and delivering the drug for extended period of time at a sustained, concentrated level at the inflammation site that mainly acts at the joint and the related regions. To develop the new topical formulations of pranoprofen that have suitable bioadhesion, the gel was formulated using hydroxypropyl methylcellulose (HPMC) and poloxamer 407. The effects of temperature on drug release was performed at $32^{\circ}C$, $37^{\circ}C$ and $42^{\circ}C$ according to drug concentration of 0.04%, 0.08%, 0.12%, 0.16%, and 0.2% (w/w) using synthetic cellulose membrane at $37{\pm}0.5^{\circ}C$. The increase of temperature showed the increased drug release. The activation energy (Ea), which were calculated from the slope of lop P versus 1000/T plots was 11.22 kcal/ mol for 0.04%, 10.79 kcal/mol for 0.08%, 10.41 kcal/mol for 0.12% and 8.88 kcal/mol for 0.16% loading dose from the pranoprofen gel. To increase the drug permeation, some kinds of penetration enhancers such as the ethylene glycols, the propylene glycols, the glycerides, the non-ionic surfactants and the fatty acids were incorporated in the gel formulation. Among the various enhancers used, propylene glycol mono laurate showed the highest enhancing effects with the enhancement factor of 2.74. The results of this study suggest that development of topical gel formulation of pranoprofen containing an enhancer is feasible.