• Title/Summary/Keyword: drug carrier

Search Result 233, Processing Time 0.023 seconds

Development of Polymeric Nanopaclitaxel and Comparison with Free Paclitaxel for Effects on Cell Proliferation of MCF-7 and B16F0 Carcinoma Cells

  • Yadav, Deepak;Anwar, Mohammad Faiyaz;Garg, Veena;Kardam, Hemant;Beg, Mohd Nadeem;Suri, Suruchi;Gaur, Sikha;Asif, Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2335-2340
    • /
    • 2014
  • Paclitaxel is hydrophobic in nature and is recognized as a highly toxic anticancer drug, showing adverse effects in normal body sites. In this study, we developed a polymeric nano drug carrier for safe delivery of the paclitaxel to the cancer that releases the drug in a sustained manner and reduces side effects. N-isopropylacrylamide/vinyl pyrrolidone (NIPAAm/VP) nanoparticles were synthesized by radical polymerization. Physicochemical characterization of the polymeric nanoparticles was conducted using dynamic light scattering, transmission electron microscopy, scanning electron microscopy and nuclear magnetic resonance, which confirmedpolymerization of formulated nanoparticles. Drug release was assessed using a spectrophotometer and cell viability assays were carried out on the MCF-7 breast cancer and B16F0 skin cancer cell lines. NIPAAm/VP nanoparticles demonstrated a size distribution in the 65-108 nm range and surface charge measured -15.4 mV. SEM showed the nanoparticles to be spherical in shape with a slow drug release of ~70% in PBS at $38^{\circ}C$ over 96 h. Drug loaded nanoparticles were associated with increased viability of MCF-7 and B16F0 cells in comparison to free paclitaxel. Nano loaded paclitaxel shows high therapeutic efficiency by sustained release action for the longer period of time, i increasing its efficacy and biocompatibility for human cancer therapy. Therefore, paclitaxel loaded (NIPAAm/VP) nanoparticles may provide opportunities to expand delivery of the drug for clinical selection.

A Review of Studies on Antibiotic Course and Antibiotic Resistance in Nasopharyngeal Pathogens in Primary Care Setting (일차진료 항생제 치료기간과 비인두 항생제 내성률에 대한 연구 고찰)

  • Shin, Hyang Hwa;Lee, Sun Haeng;Yun, Sung Joong;Chang, Gyu Tae
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.32 no.2
    • /
    • pp.64-71
    • /
    • 2018
  • Objectives The purpose of this study is to examine the correlation of antibiotics administration duration and antimicrobial resistance by reviewing domestic and foreign literatures. Methods We searched literatures dated up to 23 February, 2018 in PubMed and Cochrane Library using terms of "Anti-Bacterial Agents", "Carrier State", "Nasopharynx", "Drug Administration Schedule", and also searched via RISS (Research Information Service System), KISS (Koreanstudies Information Service System), DBpia (DataBase Periodical Information Academic) using terms of antibiotics, resistance, and dose. Results In comparison with shortened and standard antibiotic course, longer treatment duration is associated with greater antimicrobial resistance or non-significant difference, but we cannot find literature that shortened antibiotic course increases antimicrobial resistance on human nasopharyngeal flora. Conclusions Currently, there is no evidence that completing the standard antibiotic course reduces antimicrobial resistance. It can be a strategy for reducing antibiotic use to apply Korean medicine treatment, as well as short-course antibiotic therapy or delayed antibiotic prescription. Additional well-designed trials should be conducted in domestic and foreign settings about the appropriate duration of antibiotic therapy.

Selective Cytotoxicity Platinum (II) Complex Containing Carrier Ligand of cis-1,2-Diaminocyclohexane (Cis-Diaminocyclohexan을 배위자로 하는 배금(II)착체의 선택적 세포독성)

  • 노영수;정세영;정지창
    • Environmental Analysis Health and Toxicology
    • /
    • v.13 no.3_4
    • /
    • pp.87-94
    • /
    • 1998
  • The use of cisplatin is limited by severe side effects such as renal toxicity. Our platinum-base drug discovery is aimed at developing drugs capable of diminishing toxicity and improving antitumor activity. We synthesized new Pt (II) complex analogue [Pt (cis-DACH)(DPPP)]. 2NO$_3$ (PC) containing cis-1,2-diaminocyclohexane as a carrier ligand and 1,3-bis(diphenylphosphino) propane as a leaving group. Furthermore, nitrate was added to improved the solubility. In this study, its structure was determined and its antitumor activity against SKOV-3 and NIH-OVCAR-3 human ovarian adenocarcinoma, and in vitro cytotoxicity was determined against primary cultured rabbit kidney proximal tubular and renal cortical cells of human kidney using colorimetric MTT assay. PC demonstrated acceptable antitumor activity against SKOV-3 and NIH-OVCAR-3 human ovarian adenocarcinoma and significant activity as compared with that of cisplatin. The toxicity of PC was found quite less than that of cisplatin using MTT and $^3$H-thymidine uptake tests in rabbit proximal tubular cells and human kidney cortical cells. PC was used for human cortical tissue in 7 weeks hitoculture by the glucose-consumption tests. We determined that the new platinum drug has lower nephrotoxicity than cisplatin. Based on these results, this novel platinum (II) complex compound (PC) represent a valuable lead in the development of a new anticancer chemotherapeutic agent capable of improving antitumor activity and low nephrotoxicity.

  • PDF

Mechanism of Action of Various Vehicles That Enhance the Permeation of Ketoprofen (케토프로펜의 피부투과도를 증진시키는 다양한 용매의 작용기전)

  • Cho, Young-Joo;Choi, Hoo-Kyun
    • Journal of Pharmaceutical Investigation
    • /
    • v.28 no.3
    • /
    • pp.165-169
    • /
    • 1998
  • The effect of various vehicles on the permeation of a model drug, ketoprofen in solution formulation was evaluated using a flow-through diffusion cell system at $37^{\circ}C$. To investigate the mechanism of permeation rate enhancement, the effects of pretreatment with various vehicles on the permeation of the drug were evaluated using 5 mg/ml solution and saturated solution. The order of permeation rate of ketoprofen across hairless mouse skin after pretreatment with various vehicles was similar to the case where the vehicles and the drug were coadministered except ethanol and oleic acid. The results indicate that the mechanism of enhancement can be direct action of the vehicles on the barrier property of the skin and/or carrier mechanism.

  • PDF

A Review of Nanostructured Ca-aluminate Based Biomaterials within Odontology and Orthopedics

  • Hermansson, Leif
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.2
    • /
    • pp.95-107
    • /
    • 2018
  • This presentation will give an overview of Ca-aluminate based biomaterials and their proposed use within the field of nanostructured biomaterials. The paper describes typical features of Ca-aluminate materials with regard to technology, chemistry, biocompatibility including hemocompatibility and bioactivity, and developed microstructure. Special focus will be on the developed microstructure, which is in the nanosize range. Application possibilities within odontology, orthopedics, and drug delivery are presented. The nanostructure including pore size below 5 nm in these structures opens up this material for some use in specific dental-related applications in which antibacterial and bacteriostatic aspects are of importance, and as thin coating on implants within dental and orthopaedic applications. Nanosize porosity is essential in drug delivery systems for controlled release of medicaments. The priority field for Ca-aluminate biomaterials is implant materials, which use minimally-invasive techniques to offer in vivo, on-site developed biomaterials.

Swelling Controlled Delivery of Antibiotic from a Hydrophilic Macromolecular Matrix with Hydrophobic Moieties

  • Shukla, Sandeep;Bajpai, Anil Kumar;Bajpai, Jaya
    • Macromolecular Research
    • /
    • v.11 no.4
    • /
    • pp.273-282
    • /
    • 2003
  • A hydrophilic macromolecular network containing hydrophobic moieties has been prepared by free radical copolymerization of acrylamide and styrene in the presence of poly(vinyl alcohol) (PVA) and its potential as controlled drug delivery carrier was evaluated with tetracycline as a model antibiotic drug. The amount of drug was assayed spectrophotometrically. The network was characterized by optical microscopy, infra-red spectroscopy and structural parameters such as average molecular weight between cross1inks ($M_c$), cross1ink density (q) and number of elastically effective chains ($V_e$) were evaluated. It was found that with increasing concentration of PVA, ST and MBA in the hydrogel, the release rate initially increases but after definite concentrations of the above components the release rate falls. In the case of AM, release rate constantly decreases with increasing AM concentration in the hydrogel.

Hyaluronic Acid in Drug Delivery Systems

  • Jin, Yu-Jin;Ubonvan, Termsarasab;Kim, Dae-Duk
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.spc
    • /
    • pp.33-43
    • /
    • 2010
  • Hyaluronic acid (HA) is a biodegradable, biocompatible, non-toxic, non-immunogenic and non-inflammatory linear polysaccharide, which has been used for various medical applications including arthritis treatment, wound healing, ocular surgery, and tissue augmentation. Because of its mucoadhesive property and safety, HA has received much attention as a tool for drug delivery system development. It has been used as a drug delivery carrier in both nonparenteral and parenteral routes. The nonparenteral application includes the ocular and nasal delivery systems. On the other hand, its use in parenteral systems has been considered important as in the case of sustained release formulation of protein drugs through subcutaneous injection. Particles and hydrogels by various methods using HA and HA derivatives as well as by conjugation with other polymer have been the focus of many studies. Furthermore, the affinity of HA to the CD44 receptor which is overexpressed in various tumor cells makes HA an important means of cancer targeted drug delivery. Current trends and development of HA as a tool for drug delivery will be outlined in this review.