• Title/Summary/Keyword: drought year

Search Result 261, Processing Time 0.026 seconds

Application of Artificial Intelligence Technology for Dam-Reservoir Operation in Long-Term Solution to Flood and Drought in Upper Mun River Basin

  • Areeya Rittima;JidapaKraisangka;WudhichartSawangphol;YutthanaPhankamolsil;Allan Sriratana Tabucanon;YutthanaTalaluxmana;VarawootVudhivanich
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.30-30
    • /
    • 2023
  • This study aims to establish the multi-reservoir operation system model in the Upper Mun River Basin which includes 5 main dams namely, Mun Bon (MB), Lamchae (LC), Lam Takhong (LTK), Lam Phraphoeng (LPP), and Lower Lam Chiengkrai (LLCK) Dams. The knowledge and AI technology were applied aiming to develop innovative prototype for SMART dam-reservoir operation in future. Two different sorts of reservoir operation system model namely, Fuzzy Logic (FL) and Constraint Programming (CP) as well as the development of rainfall and reservoir inflow prediction models using Machine Learning (ML) technique were made to help specify the right amount of daily reservoir releases for the Royal Irrigation Department (RID). The model could also provide the essential information particularly for the Office of National Water Resource of Thailand (ONWR) to determine the short-term and long-term water resource management plan and strengthen water security against flood and drought in this region. The simulated results of base case scenario for reservoir operation in the Upper Mun from 2008 to 2021 indicated that in the same circumstances, FL and CP models could specify the new release schemes to increase the reservoir water storages at the beginning of dry season of approximately 125.25 and 142.20 MCM per year. This means that supplying the agricultural water to farmers in dry season could be well managed. In other words, water scarcity problem could substantially be moderated at some extent in case of incapability to control the expansion of cultivated area size properly. Moreover, using AI technology to determine the new reservoir release schemes plays important role in reducing the actual volume of water shortfall in the basin although the drought situation at LTK and LLCK Dams were still existed in some periods of time. Meanwhile, considering the predicted inflow and hydrologic factors downstream of 5 main dams by FL model and minimizing the flood volume by CP model could ensure that flood risk was considerably minimized as a result of new release schemes.

  • PDF

Water Use Efficiency in Five Different Species of One-year-old Seedlings Grown in a Field Nursery in Mongolia

  • Lee, Don-Koo;Park, Yeong-Dae;Batkhuu, Nyam-Osor
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.123-128
    • /
    • 2003
  • This study was conducted to examine the water use efficiency (WUE) in five species of one-year-old seedlings grown in a field nursery in Mongolia. Larix sibirica and Pinus sylvestris are the most dominant coniferous species while Ulmus pumila is an important deciduous species known well-adapted in harsh conditions such as in semi-arid forests and Gobi desert regions. Caragana arborescens (Siberian pea shrub) and Hippophae rhamnoides are N-fixing shrubs in Mongolia. Thirty one-year-old seedlings were sampled from each of the five species (a total of 150 samples) and measured for net photosynthetic rate (Pn) and transpiration rate (E). The Pn and E were used to calculate and compare the WUE of each species. Pn differed significantly among the five species (p < 0.05). However, there was no significant difference in Pn between L. sibirica and H. rhamnoides (p > 0.05). C. arborescens showed the highest Pn whereas U. pumila did the poorest. E differed significantly among the five species (p < 0.05). L. sibirica and U. pumila showed considerably lower E than other species. Thus, WUE values of coniferous species such as L. sibirica and P. sylvestris were significantly greater than deciduous or shrub species such as U. pumila, C. arborescens and H. rhamnoides (p < 0.01). It may result that conifers showed relatively high water use efficiency than deciduous or shrub trees due to their lower transpiration rates, which resulted in morphological and physiological characteristics of their leaves. This may indicate that L. sibirica and P. sylvestris can be widely used for rehabilitation works in Mongolia attributed to their dominant distributions but also their high drought-resistance properties.

  • PDF

Numerical Modeling Effects of a Skimmer Weir Method on the Control of Algal Growth in Daecheong Reservoir (부상웨어 설치에 따른 대청호 조류 성장 억제 효과 수치모의)

  • Kim, Yu Kyung;Chung, Se Woong;Lee, Heung Soo;Jung, Yong Rak
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.581-590
    • /
    • 2007
  • A float-type weir has been proposed for the control of algal blooms in some of eutrophic reservoirs recently. It is known as a costly and ecologically sound method, but there is little understanding about the sustainability of this low-cost technology for reservoirs that are located in monsoon climate areas where large flood events during the summer cause high water surface fluctuations. The objective of this study was to assess the effectiveness of a skimmer weir aimed at controlling algal blooms in the lacustrine zone and near the drinking water withdrawal structures of Daecheong Reservoir under various hydrodynamic flow conditions. The effect of weir on the control of algal blooms was simulated using a laterally averaged two-dimensional hydrodynamic and eutrophication model that can accommodate vertical displacement of the weir following the water surface fluctuations. Numerical simulations were performed for two different hydrological conditions, 2001 and 2004 for representing drought year and normal year, respectively. The results showed that the weir is very effective method to control algal blooms in the reservoir by curtailing the transport of phosphorus and algae from contaminated inflow to the downstream lacustrine epilimnion during the draught year. However, large flood events occurred in 2004 transported nutrients and algae built upstream of the weir into the downstream euphotic zone by strong entrainments.

Investigations into a Multipurpose Dam in Tasman District-New Zealand

  • Thomas, Joseph Theodore
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.40-48
    • /
    • 2008
  • The Waimea Basin is located on the northern tip of the South Island of New Zealand. It is a highly productive area with intense water use with multi-stakeholder interest in water. Irrigation from the underground aquifers here makes up the largest portion of used water; however the same aquifers are also the key urban and industrial sources of water. The Waimea/Wairoa Rivers are the main sources of recharge to the underlying aquifers and also feed the costal springs that highly valued by the community and iwi. Due to the location of the main rivers and springs close to the urban centre the water resource system here has high community and aesthetic values. Recent enhanced hydrological modelling work has shown the water resources in this area to be over allocated by 22% for a 1:10 year drought security for maintaining a minimalistic flow of 250 l/s in the lower Waimea River. The current irrigated land area is about 3700 hectares with an additional potential for irrigation of 1500 hectares. Further pressures are also coming on-line with significant population growth in the region. Recent droughts have resulted in significant water use cutbacks and the threat of seawater intrusion in the coastal margins. The Waimea Water Augmentation Committee (WWAC) initiated a three year stage 1 feasibility study in 2004/2005 into the viability of water storage in the upper parts of the catchment for enhancing water availability and its security of supply for consumptive, environmental, community and aesthetic benefits downstream. The project also sought to future proof water supply needs for the Waimea Plains and the surrounding areas for a 50 - 100 year planning horizon. The broad range stage 1 investigation programme has identified the Upper Lee Catchment as being suitable for a storage structure to provide the needs identified and also a possibility for some small scale hydro electricity generation as well. The stage 2 detailed feasibility investigations that are underway now (2007/2008), and to be completed in two years is to provide all details for progressing with the next stage of obtaining necessary permits for construction and commissioning a suitable dam.

  • PDF

A Reservoir Operation Plan Coupled with Storage Forecasting Models in Existing Agricultural Reservoir (농업용 저수지에서 저수량 예측 모형과 연계한 저수지 운영 개선 방안의 모색)

  • Ahn, Tae-Jin;Lee, Jae-Young;Lee, Jae-Young;Yi, Jae-Eung;Yoon, Yang-Nam
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.1
    • /
    • pp.77-86
    • /
    • 2004
  • This paper presents a reservoir operation plan coupled with storage forecasting model to maintain a target storage and a critical storage. The observed storage data from 1990 to 2001 in the Geum-Gang agricultural reservoir in Korea have been applied to the low flow frequency analysis, which yields storage for each return period. Two year return period drought storage is then designated as the target storage and ten year return period drought storage as the critical storage. Storage in reservoir should be forecasted to perform reasonable reservoir operation. The predicted storage can be effectively utilized to establish a reservoir operation plan. In this study the autoregressive error (ARE) model and the ARIMA model are adopted to predict storage of reservoir. The ARIMA model poorly generated reservoir storage in series because only observed storage data were used, but the autoregressive error model made to enhance the reliability of the forecasted storage by applying the explanation variables to the model. Since storages of agricultural reservoir with respect to time have been affected by irrigation area, high or mean temperature, precipitation, previous storage and wind velocity, the autoregressive error model has been adopted to analyze the relationship between storage at a period and affecting factors for storage at the period. Since the equation for predicting storage at a period by the autoregressive error model is similar to the continuity equation, the predicting storage equation may be practical. The results from compared the actual storage in 2002 and the predicted storage in the Geum-Gang reservoir show that forecasted storage by the autoregressive error model is reasonable.

Review of Disease Incidence of Major Crops in 2001 (2001년 농작물 병해 발생개황)

  • Kim, Choong-Hoe
    • Research in Plant Disease
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • Climate in the year of 2001 could be summarized as severe drought from March to May, unusually high temperature in whole plant growth periods and clear weather condition especially in harvesting time of September and October without any typoons. In rice, major diseases such as leaf and panicle blast, bacterial blight, sheath blight and bacterial grain rot developed little due to unfavorable weather conditions, however, brown spot occurred severely due partly to the reduced use of N-fertilizer, Rice stripe virus infection was unusually high mainly in the west coast areas with four times more diseaseD area campared to the previous year, In pepper phytophthora blight was extremely severe in Cheonnam and Cheonbuk provinces, where had frequent rainfalls during growing period. Incidence of major diseases of tomato and cucumber in 2001 was relatively mild. In watermelon, penicillium fruit rot, one of the peculiar disease, spread over major production areas, whereas CGMMV, usually severe in every years was much reduced. Watermelon plants growing in open-fields were more severely diseased than those in plastic houses. Major diseases of chinese melon and strawberry occurred slightly and in particular, sudden wilt syndrome of chinese melon which was severe in 2000 showed mild infections in 2001. Incidence of white rot of garlic and onion was much lower unlike other years due mainly to spring drought and high temperature in the growing period. Infected area of potato bacterial wilt tended to increase in 2001 while fusarium wilt of sweetpotato was decreased. Apple diseases were generally mild, but powdery mildew of pear increased sharply. Barley scab was not severe as seen in other years.

The Spectral Characteristics of Climatological Variables over the Asian Dust Source Regions and its Association with Particle Concentrations in Busan (황사 발원지 기후자료의 시계열 특성과 부산지역 먼지 농도의 연관성 분석)

  • Son, Hye-Young;Kim, Cheol-Hee
    • Journal of the Korean earth science society
    • /
    • v.30 no.6
    • /
    • pp.734-743
    • /
    • 2009
  • In order to examine how climatological condition can influence on urban scale particulate air pollutants, single and cross spectrum analysis have been performed to daily mean concentrations of particulate matters ($PM_{10}$) in Busan together with the climatological variables over the Asian dust source regions. Single power spectrum analysis of $PM_{10}$ concentrations in Busan shows that, aside from the typical and well-known periodicities, 3-4 year of peak periodicity of power spectrum density was identified. In cross spectrum analysis, this 3-4 year periodicity is found to have a strong positive correlation with the wind speed and pressure, and negative with the temperature and relative humidity, which is rather consistent with both characteristics of air mass during the Asian dust event whose periodicities have been recorded inter-annually over the Korean urban cities. Over the Asian dust source regions, $PM_{10}$ vs. precipitation shows no significant periodicity from the time series of precipitation data, but the periodicity of EDI (Effective Drought Index) shows some interannual variabilities ranging from 2 to 4 years over the various source regions, suggesting that, rather than precipitation itself, the EDI could be more closely associated with the occurrence frequency of Asian dust and interannual variability of urban particle concentrations in Korean cities.

A Method to Estimate the Cell Based Sustainable Development Yield of Groundwater (셀기반 지하수 개발가능량 산정기법)

  • Chung, Il-Moon;Kim, Nam Won;Lee, Jeongwoo;Na, Hanna;Kim, Youn-Jung;Park, Seunghyuk
    • Economic and Environmental Geology
    • /
    • v.47 no.6
    • /
    • pp.635-643
    • /
    • 2014
  • Sustaiable development yield of groundwater in Korea has been determined according to 10 year drought frequency of groundwater recharge in the standard mid-sized watershed or relatively large area of district. Therefore, the evaluation of groundwater impact in a small watershed is hard to apply. Fot this purpose, a novel approach to estimate cell based sustainable development yield of groundwater (SDYG) is suggested and applied to Gyeongju region. Cell based groundwater recharge is computed using hydrological component analysis using the SWAT-MODFLOW which is an integrated surface water-groundwater model. To estimate the potential amount of groundwater development, the existing method which uses 10 year drought frequency rainfall multiplied by recharge coefficient is adopted. Cell based SDYGs are computed and summed for 143 sub-watersheds and administrative districts. When these SDYGs are combined with groundwater usage data, the groundwater usage rate (total usage / SDYG) shows wide local variations (7.1~108.8%) which are unseen when average rate (24%) is only evaluated. Also, it is expected that additional SDYGs in any small district could be estimated.

Method of estimating exploitable groundwater amount considering relationship between precipitation and recharge and the variation of 10-year minimum precipitation (강수량-함양량 관계와 10년 최소강수량 변화를 고려한 지하수 개발가능량 산정 기법)

  • Chung, Il-Moon;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Min Soo
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.6
    • /
    • pp.421-427
    • /
    • 2019
  • The amount of exploitable groundwater amount in Korea has been determined by multiplying the 10-year frequency low precipitation by the recharge rate. In practice, however, the interpretation of the frequency analysis of precipitation is omitted, and the value obtained by multiplying the average recharge rate by the minimum precipitation in the recent 10 years is used as the recharge amount. Therefore, the contradiction arises that the amount of precipitation to be applied is determined according to the period selection rather than the actual low precipitation by the 10-year frequency analysis. In this study, we proposed a method for estimating the exploitable groundwater amount using the recharge amount considering the moving averaged 10-year minimum precipitation and the size of precipitation. This method was applied to the Uiwang, Gwacheon and Seongnam areas and the exploitable groundwater amount was calculated and compared with the results obtained by conventional methods. As a result, it has been confirmed that if the 10-year minimum precipitation is selected in the period including the extreme drought, the problem of underestimating the exploitable groundwater amount can be overcome by using the moving average minimum precipitation.

Analysis the Effects of Curtain Weir on the Control of Algal Bloom according to Installation Location in Daecheong Reservoir (대청호 수류차단막 설치 위치에 따른 녹조제어 효과 분석)

  • Lee, Heung Soo;Chung, Se Woong;Jeong, Hee Young;Min, Byeong Hwan
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.2
    • /
    • pp.231-242
    • /
    • 2010
  • The objective of study was to determine an optimal location of a float-type curtain weir in Daecheong Reservoir and to assess its effectiveness for the control of algal blooms in the reservoir. CE-QUAL-W2, a laterally averaged two-dimensional hydrodynamic and eutrophication model, was modified to accommodate vertical displacement of the weir according to water surface fluctuation and applied to simulate the reservoir hydrodynamics and water quality changes for the reservoir. The model calibrated in a previous study was updated and validated for different hydrological conditions representing drought year (2008) and normal year (2006) for the study, and adequately simulated the temporal and spatial variations of water temperature, nutrients and algal (Chl-a) concentrations. The effectiveness of curtain weir on the control of algal bloom was evaluated by applying the validated model to 2001 and 2006 assuming 9 scenarios for different installation locations. The reduction rates of algal concentration were placed in the range of 11.2~40.3% and 20.3~56.7% for 2001 and 2006, respectively. Although, the performance of curtain weir was slightly varied for different locations and different hydrological years, overall, the performance was improved as the weir was installed further downstream.