• Title/Summary/Keyword: drought planning

Search Result 107, Processing Time 0.031 seconds

VALUATION OF A MULTI-STAGE RAINWATER HARVESTING TANK CONSTRUCTION USING A REAL OPTION APPROACH

  • Byungil Kim;Hyoungkwan Kim;SangHyun Lee
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.386-389
    • /
    • 2013
  • Under climate change and urbanization, rainwater harvesting (RWH) systems are emerging as an alternative source of water supply because of growing concern about water sustainability. RWH systems can satisfy the various watering needs and provide the environmental benefits of lessening the damages from flood, drought, and runoff. The economic success of a RWH system is vitally concerned with the determination of the design capacity of storage tank to be built in the system. The design capacity is determined by the factors of average annual rainfall, period of water scarcity, and water price during the whole life-cycles. Despite the high uncertainties inherent in these factors, the current engineering design of RWH system construction often assumes that storage tanks should be built all at once. This assumption implicitly ignores the managerial flexibility in responds to the future as new information comes out-the right to build storage tanks stage by stage depending on the evolution of demand. This study evaluates the value of a multistage storage tank construction using a real option approach. A case study involving a typical RWH system construction in Jeonju, the Republic of Korea is conducted. The managerial flexibility obtained from the real option perspective allows engineers to develop investment strategies to better cope with the issue of water sustainability.

  • PDF

Sustainable Water Resources Planning to Prevent Streamflow Depletion in an Urban Watershed: 1. Methodology (도시유역의 건천화 방지를 위한 지속가능한 수자원 계획: 1. 방법론)

  • Lee, Kil-Seong;Cung, Eun-Sung;Kim, Young-Oh;Cho, Tak-Gun
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.11 s.172
    • /
    • pp.935-946
    • /
    • 2006
  • This study proposed a new procedure of sustainable water resources planning to prevent the urban streamflow depletion, based on the Heathcote's study in 1998: (1) to understand the watershed component and processes, (2) to identify and quantify problems within the watershed, (3) to set clear and specific goals, (4) to develop a list of management options, (5) to eliminate infeasible options, (6) to test the effectiveness of remaining feasible options, and (7) to develop the final options. PSR(Presure-State-Response) concept was used for the determination of indicators of PSD(Potential Streamflow Depletion; step 2) and effect equation (step 7) and composite programming for the calculation of PSD. The instreamflow requirement was proposed as clear and specific goal (step 3) and was determined by the larger of the PHABSIM's environmental flow and the drought flow. A continuous rainfall-runoff model is necessary to test the effectiveness of alternatives. It should estimate not only the exact runoff but also the effect of landuse change, reservoir, infiltration facility and so on like SWAT(Soil and Water Assessment Tool). The proposed procedure will be applied on the corresponding paper.

The lnfluence of Weighting Value derived by the Regression Equation on the Result of Vulnerability Assessment (회귀식에 의해 도출된 가중치가 취약성 평가에 미치는 영향)

  • Yoo, Somin;Lee, Woo-kyun;Chae, Yeo-ra;Kwak, Hanbin;Kim, Moon-Il;Jung, Raesun
    • Journal of Climate Change Research
    • /
    • v.4 no.4
    • /
    • pp.331-348
    • /
    • 2013
  • The frequency and intensity of abnormal climate caused by climate change is increasing in Korea. Also, the amount of damage from disaster is increasing rapidly. The research on vulnerability assessment analyzes environmentally, socially and economically vulnerable indicators and is ongoing to reduce the intensity of damage and establish adaptation policies for climate change. Therefore, in this study, we assessed vulnerability using weighting value derived by the regression equation. There are 3 evaluation items : vulnerability assessment for farmland erosion to flood, vulnerability assessment for health to heat wave, vulnerability assessment for forest fire to drought. For this study, indicators for each sectors were selected and spatial data for each sectors were established using GIS program. Results showed that vulnerability to heat wave was more affected by climate factors. On the other hand, vulnerability to flood and drought was more affected by social-economic factors. Then, to analysis efficiency of the regression analysis, vulnerability result was compared between the existing vulnerability research with no weighting applied and the vulnerability research with the influence of weighting value derived by the regression. This study showed that the regression analysis is efficient to provide practical and feasible alternatives in terms of planning climate change adaptation policies and it is expected to be utilized for vulnerability assessment in the future.

Development of the Close-to-Nature Construction Technology for the Low-Flow Revetment of the Stream -A Case of Junpyung Stream in Yongin City- (하천 저수로 호안의 친환경적 조성기법의 개발 -용인시 수지읍 정평천을 중심으로-)

  • 심우경;백경종
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.1
    • /
    • pp.83-91
    • /
    • 2000
  • This study was carried out to develop the close-to nature construction technology for the stream which has been improved just for the flood control with artificially straightened and concrete covered, losing the various functions of the stream such as wild-life habitat, polluted water purification and waterscape. Jungpyung stream in youngin City, Kyunggi Province was selected as a case study site. The results were as follows; 1. Existing stream improvement planning could accept the close-to-nature techniques of the low-flow revetment, keeping the capability of flood control and water use. 2. The low-flow revetment was planned and executed to the bottom of the stream without damaging the existing bank, and the slope of the low-flow revetment was adjusted as 1:1.2∼1.5. Consequently it would not disturb the water flow when the flood occurred and it would keep the constant water flow even at the drought with providing a stable ecosystem and water purification. 3. Low-flow revetement was planted with Salix species and perennials naturally, and it would be a precious biotope for the diverse floras and faunas. 4. Some furnitures such as stepping stone bridge, wooden bridge and step were installed to the suitable locations for the convenience of users, and it will be ot only the sound stream environment but also easy access to the waterscape. 5. This case study site will be monitored for 3 years systematically after the construction was finished in September, 1999 to get the exact results for the scientific approvement

  • PDF

Research Trend of Membrane for Water Treatment by Analysis of Patent and Papers Publication (특허 및 논문 게재 분석을 통한 수처리용 분리막의 연구동향)

  • Woo, Chang Hwa
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.410-419
    • /
    • 2017
  • Since the beginning of the water shortage by disasters such as global warming, environmental pollution, and drought, development of original technology and studies have been undergone to increase availability of water resources. Among them the water treatment separation membrane technology is an environmentally friendly process that does not use chemicals and shows better water quality improvement effect than conventional physicochemical and biological processes. The water treatment membrane can be applied to various fields such as waste water treatment, water purification treatment, seawater desalination, ion exchange process, ultrapure water production, organic solvent separation and water treatment technology, and it tends to expand the range of application. In the core technology of water treatment membrane, researches are being actively carried out to develop a separation membrane of better performance by controlling the pore size to adjust the separation performance. In this review, we summarized the frequency of announcement by country and organization through the technological competitiveness evaluation of patents and papers of the water separation membrane. Also, we evaluated the results from membrane research for waste water treatment, water purification treatment, seawater desalination, ion exchange process and present the future direction of research.

Investigations into a Multipurpose Dam in Tasman District-New Zealand

  • Thomas, Joseph Theodore
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.40-48
    • /
    • 2008
  • The Waimea Basin is located on the northern tip of the South Island of New Zealand. It is a highly productive area with intense water use with multi-stakeholder interest in water. Irrigation from the underground aquifers here makes up the largest portion of used water; however the same aquifers are also the key urban and industrial sources of water. The Waimea/Wairoa Rivers are the main sources of recharge to the underlying aquifers and also feed the costal springs that highly valued by the community and iwi. Due to the location of the main rivers and springs close to the urban centre the water resource system here has high community and aesthetic values. Recent enhanced hydrological modelling work has shown the water resources in this area to be over allocated by 22% for a 1:10 year drought security for maintaining a minimalistic flow of 250 l/s in the lower Waimea River. The current irrigated land area is about 3700 hectares with an additional potential for irrigation of 1500 hectares. Further pressures are also coming on-line with significant population growth in the region. Recent droughts have resulted in significant water use cutbacks and the threat of seawater intrusion in the coastal margins. The Waimea Water Augmentation Committee (WWAC) initiated a three year stage 1 feasibility study in 2004/2005 into the viability of water storage in the upper parts of the catchment for enhancing water availability and its security of supply for consumptive, environmental, community and aesthetic benefits downstream. The project also sought to future proof water supply needs for the Waimea Plains and the surrounding areas for a 50 - 100 year planning horizon. The broad range stage 1 investigation programme has identified the Upper Lee Catchment as being suitable for a storage structure to provide the needs identified and also a possibility for some small scale hydro electricity generation as well. The stage 2 detailed feasibility investigations that are underway now (2007/2008), and to be completed in two years is to provide all details for progressing with the next stage of obtaining necessary permits for construction and commissioning a suitable dam.

  • PDF

Impacts of Abnormal Weather Factors on Rice Production (패널분석-확률효과모형에 의한 등숙기 이상기상이 쌀 단수에 미치는 영향 분석)

  • Jeong, Hak-Kyun;Kim, Chang-Gil;Moon, Dong-Hyun
    • Journal of Climate Change Research
    • /
    • v.4 no.4
    • /
    • pp.317-330
    • /
    • 2013
  • The yield of rice production is affected severely by abnormal weather events, such as flood, drought, high temperature etc. The objective of this paper is to assess impacts of abnormal weather events on rice production, using a panel model which analyzes both cross-section data and ti- me series data. Abnormal weather is defined as the weather event which goes beyond the range of ${\pm}2{\sigma}$ from the average of a weather factor. The result of an analysis on impacts of high temperature on rice production showed that the yield of rice was decreased 5.8% to 16.3% under the conditions of extremely high temperature, and it was decreased 8.8 to 20.8% under the conditions of both extremely high and heavy rain. Adaptation strategies, development of new varieties enduring high temperature and heavy rain, adaptation of crop insurance, modernization of irrigation facilities are needed to minimize the impacts of abnormal weather on rice production, and to stabilize farmers' income.

A Study on the Optimum Size of Rainwater Utilization in Detached Residential Complex (단독주택단지의 빗물이용시설 적정 규모 설정 연구)

  • Baek, Jongseok;Kim, Hyungsan;Shin, Hyunsuk;Kim, Jaemoon;Park, Kyungjae
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.6
    • /
    • pp.669-677
    • /
    • 2018
  • Torrential rain and drought are repeated due to the increase in the unpredictable fluctuating of rainfall patterns. It is time for stabilize water resource management in terms of disaster prevention. Distributed control from sources is needed to minimize damages caused by torrential rains and droughts. Rain barrel can be used to reduce the runoff as they collect and store rainwater. In response to this situation, Seoul Metropolitan Government and other local governments implemented a project to support the installation of rain barrel and provided 90% of the cost of installing it in private areas. However, with limited budget, it is difficult to distribute rainwater to the city which is mostly covered by private areas. In this study, Samho-dong, Ulsan, where pilot projects of water cycle leading city are underway, analyzed the effects of reducing the runoff with respect to the amount of rainwater that can be used, and analyzed the economics of recoverable investment cost when installed. From the analysis, it was established that it is possible to show sufficient efficiency with a small capacity without the need to install large rain barrel effectively in the private sector, and to support the installation cost of less than 70 percent of the rainwater can be recovered.

Preliminary Analysis on Improvement of Water Supply Capacity of Sand Dam (샌드댐 설치에 따른 물공급 개선 효과 예비 분석)

  • Chung, Il-Moon;Lee, Jeongwoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.29-37
    • /
    • 2021
  • It is important to introduce a local adaptive water supply system for upper mountainous regions, which provide a margin of water supply. This can be done through the process of securing a water source, planning for optimal use, and combining it with a water source that can be linked. In particular, in a mountainous region located at the uppermost part of the watershed, an approach should be found to utilize the groundwater discharge supplied through valley water and lateral discharge. This study sought to improve the water supply system using sand dams in drought-prone areas in Chuncheon, in Gangwon Province. Our approach involved virtually installing a sand storage tank under the existing water source to perform modeling in consideration of the current water intake and calculating the amount of water that can be taken from the sand dam. When the sand dam was applied at a size four times larger than the existing water source, it was found that the groundwater drainage increased significantly with changes in water surface slope and hydraulic conductivity.

Streamflow response to climate change during the wet and dry seasons in South Korea under a CMIP5 climate model (CMIP5 기반 건기 및 우기 시 국내 하천유량의 변화전망 및 분석)

  • Ghafouri-Azar, Mona;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.spc
    • /
    • pp.1091-1103
    • /
    • 2018
  • Having knowledge regarding to which region is prone to drought or flood is a crucial issue in water resources planning and management. This could be more challenging when the occurrence of these hazards affected by climate change. In this study the future streamflow during the wet season (July to September) and dry season (October to March) for the twenty first century of South Korea was investigated. This study used the statistics of precipitation, maximum and minimum temperature of one global climate model (i.e., INMCM4) with 2 RCPs (RCP4.5 and RCP8.5) scenarios as inputs for The Precipitation-Runoff Modelling System (PRMS) model. The PRMS model was tested for the historical periods (1966-2016) and then the parameters of model were used to project the future changes of 5 large River basins in Korea for three future periods (2025s, 2055s, and 2085s) compared to the reference period (1976-2005). Then, the different responses in climate and streamflow projection during these two seasons (wet and dry) was investigated. The results showed that under INMCM4 scenario, the occurrence of drought in dry season is projected to be stronger in 2025s than 2055s from decreasing -7.23% (-7.06%) in 2025s to -3.81% (-0.71%) in 2055s for RCP4.5 (RCP8.5). Regarding to the far future (2085s), for RCP 4.5 is projected to increase streamflow in the northern part, and decrease streamflow in the southern part (-3.24%), however under RCP8.5 almost all basins are vulnerable to drought, especially in the southern part (-16.51%). Also, during the wet season both increasing (Almost in northern and western part) and decreasing (almost in the southern part) in streamflow relative to the reference period are projected for all periods and RCPs under INMCM4 scenario.