• Title/Summary/Keyword: drought index

Search Result 522, Processing Time 0.031 seconds

Projected changes in drought characteristics based on SSP Scenarios using multiple drought indices (SSP 시나리오 기반 다종 가뭄지수를 이용한 미래 가뭄 전망)

  • Song-Hyun Kim;Won-Ho Nam;Min-Gi Jeon;Mi-Hye Yang;Young-Sik Mun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.196-196
    • /
    • 2023
  • 가뭄은 발생 시점과 종점을 정확히 파악하기 어려우며, 피해 면적이 광범위하기 때문에 수자원시스템 전반을 비롯한 사회, 경제적 측면에서 심각한 영향을 줄 수 있다. 우리나라의 가뭄 발생경향은 2000년 이후로 급증하고 있으며, 2022년 전라남도 지역의 경우, 평년 대비 강수량이 60%에 그쳐 50년 관측 사상에서 가장 낮은 수준으로 나타나면서 극심한 가뭄이 발생하여 현재까지도 지속되고 있다. 미래에도 기후변화로 인한 가뭄의 강도와 빈도가 증가될 것으로 예측됨에 따라 가뭄을 예방하기 위한 미래 가뭄 상황의 예측에 대한 필요성이 대두되고 있다. 따라서 다양한 기후모델 및 미래 기후변화 시나리오를 활용해 미래 가뭄에 대한 전망을 분석하고 적응 전략을 수립해야 한다. 본 연구에서는 CMIP6 (Coupled Model Intercomparison Project 6)에서 제공하는 18개의 전 지구적 기후모델별로 산출한 SSP (Shared Socioeconomic Pathways) 시나리오를 기반으로 기상학적 가뭄지수인 표준강수지수 (Standardized Precipitation Index, SPI), 유효가뭄지수(Effectvie Drought Index, EDI)와 강수량 및 기온의 변화에 따른 증발산량을 고려하여 가뭄을 판단하는 표준강수증발지수 (Standardized Precipitation Evaportranspiration Index, SPEI), 증발수요 가뭄지수 (Evaporative Demand Drought Index, EDDI)를 적용하여 미래 가뭄지수별 가뭄 예측 및 변동성을 분석하였다.

  • PDF

SPRING DROUGHT MONITORING USING NDVI-BASED VCI AND SVI

  • Park, Jung-Sool;Kim, Kyung-Tak
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.552-555
    • /
    • 2007
  • In this study, the MODIS NDVI for the period of $2000{\sim}2007$ was collected and processed to obtain VCI and SVI which are the quantitative indexes of drought. The VCI and SVI based on NDVI can be used for understanding seasonal pattern of vegetation, drought identification and quantitative analysis of drought. VCI and SVI compared with monthly precipitation ratio to average, Standardized Precipitation Index(SPI), and etc., which are used to identify spring drought, to analyze drought region, similarity and difference in drought severity. In addition, frequency of Spring droughts were calculated for the period of $2000{\sim}2007$, and the usability of the MODIS images as a tool for establishing countermeasures against drought was presented by analyzing drought frequently areas.

  • PDF

Development of An Agricultural Drought Evaluation Model for Administrative Decision Support (가뭄대책 행정지원을 위한 지역논가뭄평가모형 ADEM의 개발)

  • Jang, Min-Won;Chung, Ha-Woo;Park, Ki-Wook
    • Journal of Korean Society of Rural Planning
    • /
    • v.9 no.2 s.19
    • /
    • pp.29-37
    • /
    • 2003
  • The objectives of this study are to develop an agricultural drought evaluation model based on administrative boundaries and to assist the effective drought-related decision-making of local governments. The model which was named ADEM(Administrative Drought Evaluation Model for Paddies) is designed to simulate daily water balance between available water quantities from various agricultural water facilities such as reservoirs, wells, pump stations, etc. and water requirements in paddies. And in order to numerically describe the agricultural drought severity, two indices were defined; One is ADFP(Agricultural Drought Frequency for Paddies) which is calculated with a frequency analysis of monthly water deficit, and the other is ADIP(Agricultural Drought Index for Paddies) with a scale of $-4.2{\sim}+4.2$. The developed model was applied to Yeoju district and showed good correspondence with the historical records of drought.

Analysis of Drought Spatial Distribution Using Poisson Process (포아송과정을 이용한 가뭄의 공간분포 분석)

  • Yoo, Chul-Sang;Ahn, Jae-Hyun;Ryoo, So-Ra
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.10
    • /
    • pp.813-822
    • /
    • 2004
  • This study quantifies and compares the drought return and duration characteristics by applying the Poisson process as well as based on by analyzing the observed data directly. The drought spatial distributions derived for the Gyunggi province are also compared. The monthly rainfall data are used to construct the SPI as a drought index. Especially, this study focuses on the evaluation of the Poisson process model when applying it to various data lengths such as in the spatial analysis 'of drought. Summarizing the results are as follows. (1) The Poisson process is found to be effective for the quantification of drought, especially when the data length is short. When applying the Poisson process, two neighboring sites are found insensitive to the data length to show similar drought characteristics, so the overall drought pattern becomes smoother than that derived directly from the observed data. (2) When the data length is very different site by site, the spatial analysis of drought based on a model application seems better than that based on the direct data analysis. This study also found more obvious spatial pattern of drought occurrence and duration when applying the Poisson process.

Development of Drought Vulnerability Index Using Delphi Method Considering Climate Change and Trend Analysis in Nakdong River Basin (낙동강 유역의 기후변화를 고려한 경향성 분석과 Delphi 기법을 이용한 가뭄 취약성 지수 개발)

  • Yang, Jeong-Seok;Kim, Il-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2245-2254
    • /
    • 2013
  • A vulnerability index was developed for drought by using trend analysis and Delphi method. Twelve indicators were selected based on three groups, i.e., hydrological, meteorological, and humanistic groups. Data were collected from Nakdong river watershed. Three trend tests, i.e., Mann-Kendall, Hotelling-Pabst, and Sen's trend tests, were performed for standardizing the indicators and Delphi method was used to estimate the weights for individual indicators. The drought vulnerability index was calculated for seven regions in the Nakdong watershed and Hapcheon turned out to be the most vulnerable region among the study regions. The drought vulnerability index developed in this study can be applied to other regions in Korea for establishing national water resources management plan.

A study on PDSI improvement for drought monitoring: focused on the estimation method of potential evapotranspiration (가뭄감시를 위한 파머가뭄지수 개선 방안 연구: 잠재증발산량 산정 방법을 중심으로)

  • Moon, Jang Won;Kang, Jae Won;Cho, Young Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.12
    • /
    • pp.863-875
    • /
    • 2017
  • In this study, the effects of potential evapotranspiration method on drought index results were evaluated using SC-PDSI. Monthly heat index method, Penman-Monteith method, and Hargreaves equation were used as potential evapotranspiration method. SC-PDSI was calculated using three potential evapotranspiration method at 56 stations and compared the results. As a result, it was confirmed that the results by Penman-Monteith method and Hargreaves equation showed similar SC-PDSI calculation results without much difference, and the result by monthly heat index method showed a relatively large difference. It was confirmed that the results of SC-PDSI and drought situation judgment for the period of spring and winter season showed a big difference by the month. In conclusion, when calculating PDSI in Korea, using Penman-Monteith method and Hargreaves equation will be able to express the drought situation well.

A Study of Spring Drought Using Terra MODIS Satellite Image - For the Soyanggang Dam Watershed - (Terra MODIS 위성영상을 이용한 봄 가뭄 연구 - 소양강댐유역을 대상으로 -)

  • SHIN, Hyung-Jin;PARK, Min-Ji;HWANG, Eui-Ho;CHAE, Hyo-Sok;PARK, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.4
    • /
    • pp.145-157
    • /
    • 2015
  • In 2015, drought was at the worst stage of devastation in Soyanggang Dam watershed. The purpose of this study is to trace the drought area around Soyanggang dam watershed by using Terra MODIS image because it has the ability of spatio-temporal dynamics. The MODIS indices, which included the enhanced vegetation index (NDVI), were extracted from MODIS product MOD13 16-day composite datasets with a spatial resolution of 250m from 2010.01.01 to 2015.06.30. We found that application of Vegetation Condition Index (VCI) and Standardized Vegetation Index (SVI) was suitable for monitoring the drought area. The result can be used to acquire the drought data scattered and demonstrate the potential for the use of MODIS data for temporal and spatial detection of drought effects.

Analysis of Drought Detection and Propagation Using Satellite Data (인공위성 영상 정보를 이용한 가뭄상황 및 징후분석)

  • Shin, Sha-Chul;Eoh, Min-Sun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.2 s.13
    • /
    • pp.61-69
    • /
    • 2004
  • Drought is one of the mai or environmental disasters. Weather data, particularity rainfall, are currently the primary source of information widely used for drought monitoring. However, weather data are often from a very sparse meteorological network. Therefore, data obtained from the Advanced Very High Resolution Radiometer(AVHRR) sensor boarded on the NOAA polar-orbiting satellites have been studied as a tool for drought monitoring. The normalized difference vegetation index(NDVI) and vegetation condition index(VCI) were used in this study. Also, a simple method to detect drought Is Proposed based on climatic water balance using NOAA/AVHRR data. The results clearly show that temporal and spatial characteristics of drought in Korea can be detected and mapped by the moisture index.

Effect of Soil Moisture on Nitrogen Fixation Activity of Rhizobium in Soybean (토양수분 차이가 대두 근류균의 질소고정에 미치는 영향)

  • 김용철;최인수
    • Journal of Life Science
    • /
    • v.12 no.5
    • /
    • pp.544-548
    • /
    • 2002
  • The object of this study was to investigate nitrogen fixation activity of rhizobium inoculated at seed coat when drought condition was applied in flowering period of soybean c.v. Samnamkong. The rhizobia used in this experiment were indigenous rhizobium, R2l4, RJl-29, USDA110 and USDA122. The experiment was done with 1/2000 Wagner pots in laboratory and greenhouse and was tested in completely randomized design with four replications. Nitrogen fixation activity in coventional culture was the highest in R2l4 and indigenous rhizobium among the five rhizobia strains. As given drought condition from flowering to maturity, nitrogen fixation activity was higher in R2l4 and RJl-29 than indigenous rhizobium. Leaf area and relative index (drought/convention) of pod weight were higher in USDA122, RJl-29 and R2l4 than indigenous rhizobium as given drought condition from flowering to maturity. High positive correlation was observed between nitrogen fixation activity of rhizobium and relative index(drought/convention) of pod weight. High negative correlation was observed between respiration of plant and relative index (drought/convention) of leaf area.

Comparison of Surface Water and Groundwater Responses to Drought using the Standardized Precipitation Index (SPI) (표준강수지수(SPI)를 이용한 가뭄에 대한 지표수와 지하수 반응 비교)

  • Koo, Min-Ho;Kim, Wonkyeom;Song, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.5
    • /
    • pp.1-9
    • /
    • 2022
  • A correlation analysis was performed to investigate differences in the response of surface water and groundwater to drought using the Standardized Precipitation Index (SPI). Water level data of 20 agricultural reservoirs, 4 dams, 2 rivers, and 8 groundwater observation wells were used for the analysis. SPI was calculated using precipitation data measured at a nearby meteorological station. The water storage of reservoirs and dams decreased significantly as they responded sensitively to the drought from 2014 to 2016, showing high correlation with SPI of the relatively long accumulation period (AP). The responses of rivers varied greatly depending on the presence of an upstream dam. The water level in rivers connected to an upstream dam was predominantly influenced by the dam discharge, resulting in very weak correlation with SPI. On the contrary, the rivers without dam exhibited a sharp water level rise in response to precipitation, showing higher correlation with SPI of a short-term AP. Unlike dams and reservoirs, the responses of groundwater levels to precipitation were very short-lived, and they did not show high correlation with SPI during the long-term drought. In drought years, the rise of groundwater level in the rainy season was small, and the lowered water level in the dry season did not proceed any further and was maintained at almost the same as that of other normal years. Conclusively, it is confirmed that groundwater is likely to persist longer than surface water even in the long-term drought years.