• Title/Summary/Keyword: drought damage

Search Result 197, Processing Time 0.024 seconds

Combined analysis of meteorological and hydrological drought for hydrological drought prediction and early response - Focussing on the 2022-23 drought in the Jeollanam-do - (수문학적 가뭄 예측과 조기대응을 위한 기상-수문학적 가뭄의 연계분석 - 2022~23 전남지역 가뭄을 대상으로)

  • Jeong, Minsu;Hong, Seok-Jae;Kim, Young-Jun;Yoon, Hyeon-Cheol;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.195-207
    • /
    • 2024
  • This study selected major drought events that occurred in the Jeonnam region from 1991 to 2023, examining both meteorological and hydrological drought occurrence mechanisms. The daily drought index was calculated using rainfall and dam storage as input data, and the drought propagation characteristics from meteorological drought to hydrological drought were analyzed. The characteristics of the 2022-23 drought, which recently occurred in the Jeonnam region and caused serious damage, were evaluated. Compared to historical droughts, the duration of the hydrological drought for 2022-2023 lasted 334 days, the second longest after 2017-2018, the drought severity was evaluated as the most severe at -1.76. As a result of a linked analysis of SPI (StandQardized Precipitation Index), and SRSI (Standardized Reservoir Storage Index), it is possible to suggest a proactive utilization for SPI(6) to respond to hydrological drought. Furthermore, by confirming the similarity between SRSI and SPI(12) in long-term drought monitoring, the applicability of SPI(12) to hydrological drought monitoring in ungauged basins was also confirmed. Through this study, it was confirmed that the long-term dryness that occurs during the summer rainy season can transition into a serious level of hydrological drought. Therefore, for preemptive drought response, it is necessary to use real-time monitoring results of various drought indices and understand the propagation phenomenon from meteorological-agricultural-hydrological drought to secure a sufficient drought response period.

Impact Assessment of Climate Change on Drought Risk (기후변화가 가뭄 위험성에 미치는 영향 평가)

  • Kim, Byung-Sik;Kwon, Hyun-Han;Kim, Hung-Soo
    • Journal of Wetlands Research
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2011
  • A chronic drought stress has been imposed during non-rainy season(from winter to spring) since 1990s. We faced the most significant water crisis in 2001, and the drought was characterized by sultry weather and severe drought on a national scale. It has been widely acknowledged that the drought related damage is 2-3 times serious than floods. In the list of the world's largest natural disaster compiled by NOAA, 4 of the top 5 disasters are droughts. And according to the analysis from the NDMC report, the drought has the highest annual average damage among all the disasters. There was a very serious impact on the economic such as rising consumer price during the 2001 spring drought in Korea. There has been flood prevention measures implemented at national-level but for mitigation of droughts, there are only plans aimed at emergency (short-term) restoration rather than the comprehensive preventive measures. In addition, there is a lack of a clear set of indicators to express drought situation objectively, and therefore it is important and urgent to begin a systematic study. In this study, a nonstationary downscaling model using RCM based climate change scenario was first applied to simulate precipitation, and the simulated precipitation data was used to derive Standardized Precipitation Index (SPI). The SPI under climate change was used to evaluate the spatio-temporal variability of drought through principal component analysis at three different time scales which are 2015, 2045 and 2075. It was found that spatio-temporal variability is likely to modulate with climate change.

Development on Classification Standard of Drought Severity (가뭄심도 분류기준의 개선방안 제시)

  • Kwon, Jinjoo;Ahn, Jaehyun;Kim, Taewoong
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.2
    • /
    • pp.195-204
    • /
    • 2013
  • As drought is phenomenon of nature with unavoidability and repeated characteristic, it is necessary to plan to respond to it in advance and construct drought management system to minimize its damage. This study suggested standard for classification of drought, which is appropriate for our nation to respond to drought by assessing drought severity in the regions for this study. For data collection, 61 locations were selected - the locations keep precipitation data over 30 years of observation. And data for monthly precipitation for 37 years from 1973 were used. Based on this, this study classified unified drought interval into four levels using drought situation phases which are used in government. For standard for classification of drought severity fit to our nation, status of main drought was referred and these are classified based on accumulated probability of drought - 98~100% Exceptional Drought, 94~98% Extreme Drought, 90~94% Severe Drought, 86~90% Moderate Drought. Drought index (SPI, PDSI) was made in descending order and quantitative value of drought index fit to standard of classification for drought severity was calculated. To compare classification results of drought severity of SPI and PDSI with actual drought, comparison by year and month unit were analyzed. As a result, in comparison by year and comparison by month unit of SPI, drought index of each location was mostly identical each other between actual records and analyzed value. But in comparison by month unit of PDSI for same period, actual records did not correspond to analyzed values. This means that further study about mutual supplement for these indexes is necessary.

Alleviating Effect of Salicylic Acid Pre-treatment on Soil Moisture Stress of Waxy Corn

  • Seo, Youngho;Ryu, Sihwan;Park, Jongyeol;Choi, Jaekeun;Park, Kijin;Kim, Kyunghi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.3
    • /
    • pp.213-217
    • /
    • 2015
  • Soil moisture shortage can reduce yield of waxy corn because maize is one of the sensitive crops to the drought stress. Farmers cannot irrigate due to limited water resource and irrigating facilities although applying water is the most effective practice to solve the drought problem. The study was conducted to investigate the pre-treatment effect of salicylic acid on reducing drought damage of waxy corn (Zea mays L.). Salicylic acid at concentration of 0.2 mM was applied at seven-leaf stage or ten-leaf stage three times. Drought stress was imposed by withholding irrigation from 11 days before anthesis to 10 days after anthesis. Application of salicylic acid significantly increased ear length by 11.0~12.3% and yield by 8.8~11.3% compared with non-treated control, indicating that the drought injuries of waxy corn can be alleviated through pre-treatment of salicylic acid at the vegetative stage.

Case analysis of the drought events in Geum river basin with climatic water balance. (기후학적 물수지에 의한 금강유역 가뭄사례 분석)

  • Kim, Joo-Cheol;Ahn, Jung-Min;Lee, Sang-Jin;Hwang, Man-Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1452-1456
    • /
    • 2009
  • Water related disasters frequently occur in these days due to global warming and climatic change. This give us that the trend of mal-distribution of available water resources would be increased and the environment of water resources management getting much worse. Therefore the establishment of the effective strategy should be required for water resources management urgently. In this paper the hydrological characteristics and corresponding social phenomena of the drought events in Geum river basin are inspected in depth. The word, social phenomena, means not the quantitative damage but the qualitative social influences and its main characters are analyzed by the collections of the mass media articles. This study will be helpful in prognosticating the future drought occurrence and the establishment of counterplan to them.

  • PDF

Evaluation of the past and future droughts using Standardized Precipitation Index (SPI) and Effective Drought Index (EDI) in the western region of Chungnam Province (SPI와 EDI를 이용한 충남 서부지역 과거와 미래 가뭄 평가)

  • An, Hyowon;Ha, Kyoochul
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.4
    • /
    • pp.14-27
    • /
    • 2020
  • The drought has occurred from the past, and has caused a lot of damage. It is important to analyze the past droughts and predict them in the future. In this study, the temperature and precipitation of the past and the future from climate change RCP 4.5 and 8.5 scenarios were analyzed for Seosan and Boryeong in the western region of Chungnam Province, which is considered as a drought-prone area on the Korean Peninsula. Comparing Standardized Precipitation Index (SPI) and Effective Drought Index (EDI) based on the past droughts, EDI was verified to be more suitable for the drought assessment. According to RCP 4.5, the frequency and intensity of droughts in the early future (2021~2060) were expected to increase and to be stronger. Particularly, severe droughts were predicted for a long time from 2022 to 2026, and from 2032 to 2039. Droughts were expected to decrease in the late future (2061~2100). From RCP 8.5, drought occurrences were predicted to increase, but the intensity of the droughts were expected to decrease in the future. As a result of evaluation of the frequencies of droughts by seasons, the region would be most affected by fall drought in the early future and by spring drought in the late future according to RCP 4.5. In the case of RCP 8.5, the seasonal effects were not clearly distinguished. These results suggest that droughts in the future do not have any tendency, but continue to occurr as in the past. Therefore, the measures and efforts to secure water resources and reinforcement of water supply facilities should be prepared to cope with droughts.

Projected Future Extreme Droughts Based on CMIP6 GCMs under SSP Scenarios (SSP 시나리오에 따른 CMIP6 GCM 기반 미래 극한 가뭄 전망)

  • Kim, Song-Hyun;Nam, Won-Ho;Jeon, Min-Gi;Hong, Eun-Mi;Oh, Chansung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.4
    • /
    • pp.1-15
    • /
    • 2024
  • In recent years, climate change has been responsible for unusual weather patterns on a global scale. Droughts, natural disasters triggered by insufficient rainfall, can inflict significant social and economic consequences on the entire agricultural sector due to their widespread occurrence and the challenge in accurately predicting their onset. The frequency of drought occurrences in South Korea has been rapidly increasing since 2000, with notably severe droughts hitting regions such as Incheon, Gyeonggi, Gangwon, Chungbuk, and Gyeongbuk in 2015, resulting in significant agricultural and social damage. To prepare for future drought occurrences resulting from climate change, it is essential to develop long-term drought predictions and implement corresponding measures for areas prone to drought. The Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report outlines a climate change scenario under the Shared Socioeconomic Pathways (SSPs), which integrates projected future socio-economic changes and climate change mitigation efforts derived from the Coupled Model Intercomparison Project 6 (CMIP6). SSPs encompass a range of factors including demographics, economic development, ecosystems, institutions, technological advancements, and policy frameworks. In this study, various drought indices were calculated using SSP scenarios derived from 18 CMIP6 global climate models. The SSP5-8.5 scenario was employed as the climate change scenario, and meteorological drought indices such as the Standardized Precipitation Index (SPI), Self-Calibrating Effective Drought Index (scEDI), and Standardized Precipitation Evapotranspiration Index (SPEI) were utilized to analyze the prediction and variability of future drought occurrences in South Korea.

Vulnerability Evaluation of Groundwater Well Efficiency and Capacity in Drought Vulnerable Areas (가뭄 취약지역의 관정 효율 및 능력에 대한 취약성평가)

  • Shin, Hyung-jin;Lee, Jae-young;Jo, Sung-mun;Jeon, Sang-min;Kim, Mi-sol;Cha, Sang-sun;Park, Chan-gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.6
    • /
    • pp.41-53
    • /
    • 2019
  • Recently, the damage caused by climate change has been distinguished in the world. The Korean Peninsula is also suffering from drought, so it is necessary to study the vulnerability assessment to identify and predict the state of the irrigation facility, which is a irrigation facility. As the damage caused by drought is occurring in the Korean peninsula, it is necessary to study the vulnerability assessment to know the condition of the irrigation facility, and to predict it. The target areas were Yeongdong-gun, Cheonan-si, Mungyeong-si, Geochang-gun, Muju-gun, and Yeonggwang-gun. The survey items were selected as positive impacts survey items, including precipitation, groundwater level, and pumping capacity per groundwater well. The negative impacts were selected as the cultivation acreage, Number of days without rain, and the ratio of private underground wells. The survey method was investigated by various methods such as "weather data portal", "groundwater level status information", "agricultural drought management system", "groundwater survey yearbook". The results of vulnerability assessment were expressed by the score by conducting survey and standardization. As a result, Yeonggwang-gun showed normal vulnerability, and other areas showed "vulnerable" or "very vulnerable".

Influence of Drought Period in Different Growth Stage on Agronomic Characters in Sesame (참깨 생육기별 한발기간이 주요형질에 미치는 영향)

  • 최형국;김용재;구자옥;최원열;김학진
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.4
    • /
    • pp.295-303
    • /
    • 1990
  • In this study, drought period when important agronomic characters of sesame plant is critical, was examined at different growth stages. Plant death by drought started at 40 days after drought in vegetative growth stage and 20 days, in reproductive growth stage. Obserbed by growth stage, drought damage in reproductive growth stage was more in jurious than vegetative growth stage. All the important agronomic characters was refreshed until 40 days and 20 days after drought in vegetative growth stage and reproductive growth stage respectively, but it could berefreshed after those times. Decrease rate of yield by drought ranged from 29 to 80% in vegetative growth stage and from 49 to 85% in respective growth stage. All the important agronomic characters except rate of ripeness showed positive association with grain yield under drought condition. Oil content in grain was decreaced by drought but composition of fatty acid was not affected by it.

  • PDF

Climate Change and Drought: Study on Shadow Price and Damage Cost of Water under Drought (기후변화와 가뭄: 가뭄시 물의 잠재가격 및 피해 추정연구)

  • Ryu, Mun-Hyun;Jang, Seok-Won;Park, Doo-Ho
    • Journal of Wetlands Research
    • /
    • v.13 no.2
    • /
    • pp.209-218
    • /
    • 2011
  • This study is to estimate economic damages of water shortage, especially drought. we assume scenarios of water shortage and use water input-output linear programming. The result is that economic damage is about 6.4 trillion won in the case of 10% water shortage. According to water shortage scenarios, the shadow price of water in Korea is increasing from 2,462 won to 76,902 won. This study indicates that water has a significant influence on the industrial production in Korea and provides the necessity of the climate change policy for water management.