• Title/Summary/Keyword: drought assessment

Search Result 305, Processing Time 0.025 seconds

Water utilities vulnerability assessment and adaption strategies for climate change in Jeju province (제주도 기후변화 관련 상수도시설 취약성 평가 및 적응대책)

  • Kim, Jinkeun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.6
    • /
    • pp.517-526
    • /
    • 2018
  • Climate adaptation strategies for water utilities including 16 water treatment plants(WTPs) in Jeju were investigated. Drought, heat wave, and heavy rain were among the most significant climate factors affecting water utilities in Jeju. Heat wave increases water temperature, which in turn increases the concentration of algae, color, and odor materials. Some adaption strategies for the heat wave can be strengthening water monitoring and introducing advanced water treatments. Heavy rain increases raw water turbidity in surface water. The 7 WTPs that take raw water from streams or springs had a maximum turbidity of less than 50 NTU under heavy rain. However, due to concerns of turbidity spike in treated water, some WTPs discontinued intaking raw water when raw water turbidity increased more than 2 NTU. They instead received treated water from other WTPs which took groundwater for water supply. This happens because of the low skills of employees. Thus, there needs to be an increase in operator competency and upgrade of water facilities for the adaption of heavy rain. To improve adaption for the drought, there should be an increase in the capacity of intake facilities of surface water as well as a decrease in water loss. In addition, water consumption per person should be decreased.

Hydrological Drought Assessment and Monitoring Based on Remote Sensing for Ungauged Areas (미계측 유역의 수문학적 가뭄 평가 및 감시를 위한 원격탐사의 활용)

  • Rhee, Jinyoung;Im, Jungho;Kim, Jongpil
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.525-536
    • /
    • 2014
  • In this study, a method to assess and monitor hydrological drought using remote sensing was investigated for use in regions with limited observation data, and was applied to the Upper Namhangang basin in South Korea, which was seriously affected by the 2008-2009 drought. Drought information may be obtained more easily from meteorological data based on water balance than hydrological data that are hard to estimate. Air temperature data at 2 m above ground level (AGL) were estimated using remotely sensed data, evapotranspiration was estimated from the air temperature, and the correlations between precipitation minus evapotranspiration (P-PET) and streamflow percentiles were examined. Land Surface Temperature data with $1{\times}1km$ spatial resolution as well as Atmospheric Profile data with $5{\times}5km$ spatial resolution from MODIS sensor on board Aqua satellite were used to estimate monthly maximum and minimum air temperature in South Korea. Evapotranspiration was estimated from the maximum and minimum air temperature using the Hargreaves method and the estimates were compared to existing data of the University of Montana based on Penman-Monteith method showing smaller coefficient of determination values but smaller error values. Precipitation was obtained from TRMM monthly rainfall data, and the correlations of 1-, 3-, 6-, and 12-month P-PET percentiles with streamflow percentiles were analyzed for the Upper Namhan-gang basin in South Korea. The 1-month P-PET percentile during JJA (r = 0.89, tau = 0.71) and SON (r = 0.63, tau = 0.47) in the Upper Namhan-gang basin are highly correlated with the streamflow percentile with 95% confidence level. Since the effect of precipitation in the basin is especially high, the correlation between evapotranspiration percentile and streamflow percentile is positive. These results indicate that remote sensing-based P-PET estimates can be used for the assessment and monitoring of hydrological drought. The high spatial resolution estimates can be used in the decision-making process to minimize the adverse impacts of hydrological drought and to establish differentiated measures coping with drought.

Drought Resistance Assessment of Four Shrub Species Including Nandina Domestica for Extensive Green Roof (옥상녹화를 위한 남천 외 3수종의 내건성 평가)

  • Shin, Chang-Seob;Li, Hexi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.267-273
    • /
    • 2014
  • This study is to compare drought-resistance and to find the permanent wilting coefficient of Syringa Dilatata, Euonymus Japonica, Ligustrum Obtusifolium, Nandina Domestica, which are commonly used for rooftop garden due to their relatively strong drought resistance To compare the drought resistance precipitation was blocked from June 4, 2013 to July 20, 2013. During this time, the relative water content, specific electrical conductance, and water potential were measured every seven days and permanent wilting coefficients were investigated. Two days after precipitation was blocked, the relative water content in leaves were measured as follows: Ligustrum Obtusifolium 91.3%, Syringa Dilatata 92.9%, Nandina Domestica 91.2%, and Euonymus Japonica 90.1% respectively. After 28 days, relative water contents of leaves were reduced greatly 60.2% for Ligustrum Obtusifolium and 67.8% for Syringa Dilatata, but Nandina Domestica and Euonymus Japonica's reduced to 80.1% and 81.7% respectively. Permanent wilting coefficient was Ligustrum Obtusifolium 3.1%, Syringa Dilatata 2.1%, Nandina Domestica 1.6% and Euonymus Japonica 0.7%. In other words, the above four tree species are strong in drought resistance and Euonymus Japonica's drought resistance is the strongest while Nandina Domestica, Syringa Dilatata, Ligustrum Obtusifolium follow in that order.

Applicability Assessment of Hydrological Drought Outlook Using ESP Method (ESP 기법을 이용한 수문학적 가뭄전망의 활용성 평가)

  • Son, Kyung Hwan;Bae, Deg Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.7
    • /
    • pp.581-593
    • /
    • 2015
  • This study constructs the drought outlook system using ESP(Ensemble Streamflow Prediction) method and evaluates its utilization for drought prediction. Historical Runoff(HR) was estimated by employing LSM(Land Surface Model) and the observed meteorological, hydrological and topographical data in South Korea. Also Predicted Runoff(PR) was produced for different lead times(i.e. 1-, 2-, 3-month) using 30-year past meteorological data and the initial soil moisture condition. The HR accuracy was higher during MAM, DJF than JJA, SON, and the prediction accuracy was highly decreased after 1 month outlook. SRI(Standardized Runoff Index) verified for the feasibility of domestic drought analysis was used for drought outlook, and PR_SRI was evaluated. The accuracy of PR_SRI with lead times of 1- and 2-month was highly increased as it considered the accumulated 1- and 2-month HR, respectively. The Correlation Coefficient(CC) was 0.71, 0.48, 0.00, and Root Mean Square Error(RMSE) was 0.46, 0.76, 1.01 for 1-, 2- and 3-month lead times, respectively, and the accuracy was higher in arid season. It is concluded that ESP method is applicable to domestic drought prediction up to 1- and 2-month lead times.

The development of water circulation model based on quasi-realtime hydrological data for drought monitoring (수문학적 가뭄 모니터링을 위한 실적자료 기반 물순환 모델 개발)

  • Kim, Jin-Young;Kim, Jin-Guk;Kim, Jang-Gyeng;Chun, Gun-il;Kang, Shin-uk;Lee, Jeong-Ju;Nam, Woo-Sung;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.8
    • /
    • pp.569-582
    • /
    • 2020
  • Recently, Korea has faced a change in the pattern of water use due to urbanization, which has caused difficulties in understanding the rainfall-runoff process and optimizing the allocation of available water resources. In this perspective, spatially downscaled analysis of the water balance is required for the efficient operation of water resources in the National Water Management Plan and the River Basin Water Resource Management Plan. However, the existing water balance analysis does not fully consider water circulation and availability in the basin, thus, the obtained results provide limited information in terms of decision making. This study aims at developing a novel water circulation analysis model that is designed to support a quasi-real-time assessment of water availability along the river. The water circulation model proposed in this study improved the problems that appear in the existing water balance analysis. More importantly, the results showed a significant improvement over the existing model, especially in the low flow simulation. The proposed modeling framework is expected to provide primary information for more realistic hydrological drought monitoring and drought countermeasures by providing streamflow information in quasi-real-time through a more accurate natural flow estimation approach with highly complex network.

Assessment of drought stress in maize growing in coastal reclaimed lands on the Korean Peninsula using vegetation index (식생지수를 활용한 한반도 해안 간척지 옥수수의 한발스트레스 해석)

  • Seok In Kang;Tae seon Eom;Sung Yung Yoo;Sung ku Kang;Tae Wan Kim
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.3
    • /
    • pp.283-290
    • /
    • 2023
  • The Republic of Korea reclaimed land to increase its food self-sufficiency rate, but the yield was reduced due to abnormal climate. In this study, it was hypothesized that rapid and continuous monitoring technology could help improve yield. Using the vegetation index (VI) analysis, the drought stress index was calculated and the drought stress for corn grown in Hwaong, Saemangeum, and Yeongsan River reclaimed tidal land was predicted according to drying treatment. The vegetation index of corn did not decrease during the last 20 days of irrigation when soil moisture rapidly decreased, but decreased rapidly during the 20 days after irrigation. The reduction rate of the vegetation index according to the drying treatment was in the order of Saemangeum>Yeongsan River>Hwaong reclaimed tidal land, and normalized difference vegetation index(NDVI) decreased by approximately 50% in all reclaimed tidal lands, confirming that drought stress occurred due to the decrease in moisture content of the leaves. In addition, structure pigment chlorophyll index (SIPI) and photochemical reflectance index (PRI), which are calculated based on changes in light use efficiency and carotenoids, were reduced; drought stress caused a decrease in light use efficiency and an increase in carotenoid content. Therefore, vegetation index analysis was confirmed to be effective in evaluating and predicting drought stress in corn growing on reclaimed tidal land corn.

Quantitative characterization of historical drought events in Korea -focusing on outlier analysis of precipitation- (우리나라 과거 가뭄사상의 정량적 특성 분석 -강수량의 이상치 분석을 중심으로-)

  • Jang, Ho-Won;Cho, Hyeong-Won;Kim, Tae-Woong;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.2
    • /
    • pp.145-153
    • /
    • 2016
  • Using monthly rainfalls, this study investigated outliers of annual and/or seasonal rainfall for quantitative assessment of historical droughts in Korea. Based on the analysis of annual rainfall, Icheon, Geochang, Jeongeup, Suncheon and Jangheung gaging stations were selected to represent the major river basins, because they had most frequent dry years. The overall results indicated that the years of 1988 and 1994 were the worst dry years. Although the 2001 drought was not severe, it resulted in typical agricultural drought damage mainly in Seomjin and Yeongsan river basin due to the lack of agricultural water. On the other hand, the droughts of 1981-1982 and 1994-1995 were long term nation wide droughts that lasted more than two years resulting in extensive drought damages to parts of the country.

Assessment of Agricultural Drought Using Satellite-based TRMM/GPM Precipitation Images: At the Province of Chungcheongbuk-do (인공위성 기반 TRMM/GPM 강우 이미지를 이용한 농업 가뭄 평가: 충청북도 지역을 중심으로)

  • Lee, Taehwa;Kim, Sangwoo;Jung, Younghun;Shin, Yongchul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.4
    • /
    • pp.73-82
    • /
    • 2018
  • In this study, we assessed meteorological and agricultural drought based on the SPI(Standardized Precipitation Index), SMP(Soil Moisture Percentile), and SMDI(Soil Moisture Deficit Index) indices using satellite-based TRMM(Tropical Rainfall Measuring Mission)/GPM(Global Precipitation Measurement) images at the province of Chungcheongbuk-do. The long-term(2000-2015) TRMM/GPM precipitation data were used to estimate the SPI values. Then, we estimated the spatially-/temporally-distributed soil moisture values based on the near-surface soil moisture data assimilation scheme using the TRMM/GPM and MODIS(MODerate resolution Imaging Spectroradiometer) images. Overall, the SPI value was significantly affected by the precipitation at the study region, while both the precipitation and land surface condition have influences on the SMP and SMDI values. But the SMP index showed the relatively extreme wet/dry conditions compared to SPI and SMDI, because SMP only calculates the percentage of current wetness condition without considering the impacts of past wetness condition. Considering that different drought indices have their own advantages and disadvantages, the SMDI index could be useful for evaluating agricultural drought and establishing efficient water management plans.

Water Supply Risk Assessment of Agricultural Reservoirs using Irrigation Vulnerability Model and Cluster Analysis (관개취약성 평가모형 및 군집분석을 활용한 용수공급 위험도 평가)

  • Nam, Won-Ho;Kim, Taegon;Hong, Eun-Mi;Hayes, Michael J.;Svoboda, Mark D.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.1
    • /
    • pp.59-67
    • /
    • 2015
  • Because reservoirs that supply irrigation water play an important role in water resource management, it is necessary to evaluate the vulnerability of this particular water supply resource. The purpose of this study is to provide water supply risk maps of agricultural reservoirs in South Korea using irrigation vulnerability model and cluster analysis. To quantify water supply risk, irrigation vulnerability indices are estimated to evaluate the performance of the water supply on the agricultural reservoir system using a probability theory and reliability analysis. First, the irrigation vulnerability probabilities of 1,346 reservoirs managed by Korea Rural Community Corporation (KRC) were analyzed using meteorological data on 54 meteorological stations over the past 30 years (1981-2010). Second, using the K-mean method of non-hierarchical cluster analysis and pre-simulation approach, cluster analysis was applied to classify into three groups for characterizing irrigation vulnerability in reservoirs. The morphology index, watershed area, irrigated area, and ratio between watershed and irrigated area are selected as the clustering analysis parameters. It is suggested that the water supply risk map be utilized as a basis for the establishment of risk management measures, and could provide effective information for a reasonable decision making on drought risk mitigation.

Application Study of Vulnerability Assessment Models for Water Resources to Climate Change by Spatial and Watershed Scales (수자원 기후변화 취약성 평가모형의 공간 및 유역규모별 적용 연구)

  • Chung, Ji Woong;Lee, Woo-Kyun;Cui, Guishan;Lee, Sang Chul;Choi, Sungho;Choi, Hyun-Ah
    • Journal of Climate Change Research
    • /
    • v.1 no.1
    • /
    • pp.21-30
    • /
    • 2010
  • In this study, vulnerability of water resources to climate change was assessed in terms of flood, drought and water management. Criteria and indicators were employed for assessing the vulnerability. The criteria used to assess the vulnerability was sensitivity of the study area, the exposure to climate and the adaptability to climate change. These criteria were quantified and standardized using corresponding indicators. Vulnerability of water resources to climate change is assessed to be generally increasing over time. The appropriate watershed scales are the large drainage basin for national level vulnerability assessment and the small drainage basin for local one.