• Title/Summary/Keyword: drought assessment

Search Result 305, Processing Time 0.042 seconds

Evaluating the economic benefit of diverse drought mitigation strategies for Korean reservoir systems based on simulated inflow sequences (유입량 모의 기법을 활용한 국내 다목적댐 가뭄 대책의 경제적 효과 평가)

  • Ji, Sukwang;Shin, Geumchae;Lee, Seungyub;Ahn, Kuk-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.8
    • /
    • pp.485-496
    • /
    • 2023
  • Recently, South Korea has been making efforts to mitigate the risk of water scarcity during droughts by utilizing various drought response measures in dam operations. While various studies have been conducted on this topic, there is currently a lack of research on the economic effects of drought response measures. In this study, we evaluated the economic effects of drought response measures on nationwide multipurpose dams by using a long-term simulated inflow model based on ARIMA and Copula and a dam operation model that reflects drought response measures. The results showed that the expected benefits per unit flow rate were highest for coordinated operation and alternative water supply measures, at KRW 1,176 and KRW 1,139, respectively, while the benefits of emergency water supply utilization and water supply adjustment were estimated at KRW 956 and KRW 875, respectively. Additionally, when we examined the changes in the economic benefits of drought response measures based on the assumption of increased drought severity in the future, the changes in the drought risk resulting from reduced inflow increased the economic benefits of all drought response measures. The economic benefits of water supply adjustment increased by 2.6% compared to the baseline, while the economic benefits of coordinated operation and alternative water supply measures increased by 11.7% compared to the baseline. This suggests that dam-network-based measures, such as coordinated operation and alternative water supply measures, are crucial as drought risk increases. This study is expected to serve as a fundamental reference for selecting and utilizing drought response measures in the future.

A Preliminary Study for Vulnerability Assessment to Natural Hazards in Gyeongsangnam-do (경남 시군별 자연재해 취약성 평가 및 유형 분류)

  • Kim, Sung Jae;Kim, Yong Wan;Choi, Young Wan;Kim, Sung Min;Jang, Min Won
    • KCID journal
    • /
    • v.19 no.1
    • /
    • pp.97-105
    • /
    • 2012
  • This study aimed to evaluate the vulnerability to different natural hazards such as flood, drought, and abnormal climate, and to classify the vulnerability patterns in Gyeongsangnam-do. The damage records and annual budgets during 2000 to 2009 were collected and were ranked for all twelve si-guns. Sancheong-gun and Hamyang-gun resulted in the most vulnerable to flood and drought damages, and Hadong-gun and Yangsan-si were most damaged from abnormal climate such as heavy snow and heavy wind. In addition, three clusters were classified by using Ward's method, and were interpreted. The results showed that the western areas of Gyeongsangnam-do might be more vulnerable to flood damage while drought might threaten the eastern si-guns.

  • PDF

Assessment of Remote Sensing-based Hydrological Drought Indices (인공위성영상 기반의 수문기상변수를 활용한 수문학적 가뭄지수 개발 및 평가)

  • Sur, Chanyang;Park, Seo-Yeon;Kim, Tae-Woong;Lee, Joo-Heon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.22-22
    • /
    • 2018
  • 본 연구에서는 수문학적 가뭄을 분석하기 위해 두가지 지수를 개발하여 소개하고자 한다. 첫번째는, 물수지식을 기반으로 산정된 Water Budget-based Drought Index(WBDI)로 강우와 증발산의 차이를 이용하여 산정한다. 두 번째는 에너지 수지식을 기반으로 산정된 Energy-based Water Deficit Index(EWDI)로 에너지 수지 기반의 증발산, 태양복사에너지와 토양수분 등을 이용하여 산정한다. 두가지 지수 모두 인공위성 영상 자료를 활용하였다. WBDI 산정을 위한 강수량 자료는 Tropical Rainfall Measuring Mission(TRMM)과 Global Precipitation Mission(GPM)를 활용하였으며, 증발산 자료는 Moderate Resolution Imaging Spectroradiometer (MODIS) 자료를 활용하였다. EWDI 산정에 필요한 입력자료는 모두 MODIS 자료를 활용하였다. 산정된 두 가뭄지수의 수문학적 가뭄 분석을 위해 자연유출지점인 6개 지점을 선정하여 유출량 자료와 비교하였다. 유출량 자료를 활용하여 Error matrix 기법을 적용하여 두 수문학적 가뭄지수의 우리나라에서의 적용성을 파악하였다.

  • PDF

Decision Support System for the Water Supply System in Fukuoka, Japan

    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2001.05a
    • /
    • pp.15-24
    • /
    • 2001
  • This study introduces an integrated decision support system (DSS) for the water supply system in Fukuoka City, Japan. The objective is to conceive a comprehensive tool that may aid decision-makers to derive the best water supply alternatives from a multi-reservoir system in order to minimize the long-term drought damages and threat of water shortage. The present DSS consists of graphical user interface (GUI), a database manager, and mathematical models for runoff analysis, water demand forecasting, and reservoir operation. The methodology applied explicitly integrates the drought risk assessment based on the concept of reliability, resiliency, and vulnerability, as constraints to derive the management operation. The application of the DSS to the existing water supply system in Fukuoka City was found to be an efficient tool to facilitate the examination of a sequence of water supply scenarios toward an improved performance of the actual water supply system during periods of drought.

  • PDF

Recharge Potential Assessment of Artificial Recharge System for Agricultural Drought Adaptation (농업가뭄대응을 위한 인공함양 시스템의 함양능력 평가)

  • Lee, Jae Young;Kim, Gyoo Bum
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.1
    • /
    • pp.61-72
    • /
    • 2021
  • There is an increasing need for water supply plan using sustainable groundwater to resolve water shortage problem caused by drought due to climate change and artificial aquifer recharge has recently emerged as an alternative. This study deals with recharge potential assessment for artificial recharge system and quantitative assessment for securing stable water and efficient agricultural water supply adapt to drought finding optimal operating condition by numerical modeling to reflect recharge scenarios considering climate condition, target water intake, injection rate, and injection duration. In order to assess recharge potential of injection well, numerical simulation was performed to predict groundwater level changes in injection and observation well respect to injection scenarios (Case 1~4) for a given total injection rate (10,000 m3). The results indicate that groundwater levels for each case are maintained for 25~42 days and optimal injection rate is 50 m3/day for Case 3 resulted in groundwater level rise less than 1 m below surface. The results also show that influential area of groundwater level rise due to injection was estimated at 113.5 m and groundwater storage and elapsed time were respectively increased by 6 times and 4 times after installation of low permeable barrier. The proposed assessment method can be contributed to sustainable agricultural water supply and stable water security for drought adaptation.

Assessment of Anti-Drought Capacity for Agricultural Reservoirs using RCP Scenarios (RCP 시나리오 기반 농업용 저수지의 내한능력 평가)

  • Park, Na-Young;Choi, Jin-Yong;Yoo, Seung-Hwan;Lee, Sang-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.13-24
    • /
    • 2013
  • Agriculture is affected directly by climate conditions and changes, and it is necessary to understand the impact of climate change on agricultural reservoirs which are the main water resources for paddy fields in Korea. This study aimed to evaluate the impact of climate change on the anti-drought capacity including water supply capability (WSC) and drought response ability (DRA) of agricultural reservoirs based on RCP (Representative Concentration Pathway) 4.5 and 8.5 scenarios of CanESM2 (The Second Generation Earth System Model) provided by CCCma (Canadian Center for Climate Modeling and Analysis). The WSC and DRA were estimated using frequency analysis and runs theory. The six reservoirs (Yooshin, Nogok, Kumsung, Songgok, Gapyung, Seoma) were selected considering geographical characteristics and design criteria of reservoir capacity. In case of Seoma reservoir, more than 10 year drought return period (DRP), the variation of the WSC was estimated larger than the others. In case of Yooshin reservior (2~5 DRP) DRC was decreased in 2025s under RCP8.5. These results could be utilized for agricultural reservoirs management and future design criteria considering climate change impacts on paddy irrigation.

Preliminary Research on Domestic Application of Vegetation Drought Response Index (VegDRI) (식생가뭄반응지수(VegDRI) 국내 적용방안 기초연구)

  • Park, Junehyeong;Ji, Hee-sook;Lim, Yoon-Jin;Kim, Baek-Jo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.248-248
    • /
    • 2017
  • 최근 가뭄 모니터링을 위해 과거에 비하여 고해상도의, 물리적으로 기반을 두는 정보가 요구되고 있다. 기존에 주로 활용하고 있는 통계적 방법론 기반의 가뭄지수들은 지니고 있는 한계에 대해 여러 개선과정을 거치고 있으나, 기상변수로부터 지표상의 식생 관련 변수로의 전파 과정에 대한 개별 통계적 가뭄지수 간의 관계 설명이 매우 어렵다. 이와 같은 관계로, 국내 유역에서의 물리적 기반을 둔 고해상도 가뭄 판단방법에 대한 시도가 필요한 시점이다. Brown et al. (2008)은 위성기반 식생정보, 기상학적 가뭄지수, 지형학적 조건을 고려한 식생가뭄반응지수(Vegetation Drought Response Index; 이하 VegDRI)를 개발하였다. 학습자료에 대해 CART 기반의 경험적 모델을 구축하여, 격자마다 근-실시간 자료를 적용한 VegDRI를 산출하여 고해상도의 지도를 산출하는 방식을 제시하였다. VegDRI는 NCDC의 U.S. Drought Monitoring에 활용되고 있으며, NOAA의 Drought Task Force Assessment Protocol에서는 가뭄 모니터링의 기준으로 설정되어 있다. 본 연구에서는 국내에 VegDRI를 적용하고자 필요한 자료수집 및 전처리 과정을 거쳐 결과를 도출하였다. 기상청 ASOS 기상관측소에서 얻은 기상변수, MODIS 위성으로부터 추출된 정규식생지수(Normalized Difference Vegetation Index; NDVI), 지형학적 정보와 기상학적 가뭄지수(SPI, PDSI)를 기계학습으로 모델링하여 VegDRI를 산출하였다. 산출된 VegDRI 공간분포도에 대하여 기존에 활용되던 유관기관의 가뭄 판단방법과의 유사성과 차이점을 비교 검토하여 적용성을 평가하였다.

  • PDF

Drought propagation assessment with WRF-Hydro model : from meteorological drought to hydrological drought (WRF-Hydro 모형을 활용한 가뭄전이 분석)

  • Lee, Jaehyeong;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.51-51
    • /
    • 2019
  • 기후변화 따라 과거에 경험하지 못했던 이상 수문기상 및 기상재해가 유발되며, 그 피해의 규모는 매년 증가한다. 그 중 가뭄은 미국 해양기상청(NOAA)이 선정한 20세기 최대 자연재해 중 상위 5위 안에 랭크되었으며 가뭄의 피해와 영향력은 막대하다고 언급하였다. 가뭄은 발생과정과 피해 영향에 따라 기상학적, 농업적, 수문학적, 사회경제학적 가뭄으로 구분할 수 있으며 직 간접적으로 영향을 미치고 기상학적 가뭄에서 수문학적 가뭄 등으로 가뭄의 종류가 변화되며 이를 가뭄전이라고 부른다,. 본 연구에서는 기상학적 가뭄에서 수문학적 가뭄으로 전이되는 과정을 분석하기 위하여 Weather Research and Forecasting and Model Hydrological modeling extension package (WRF-Hydro) 모형을 한반도 대상으로 구축하였다. 모형의 정확성을 향상시키기 위해 충주댐, 소양강댐, 용담댐, 남강댐의 유입량과 모형 유출량을 비교 분석하였으며, 유출에 영향을 미치는 지면 유출, 표면 거칠기와 같은 파라미터를 보정하여 주었다. 위와 같이 구축, 보정된 모형을 활용하여 모의된 유출량을 이용하여 수문학적 가뭄지수 Standardized Streamflow Drought Index(SSFI)를 도출하여 기상학적 가뭄지수 Standardized Precipitation Index(SPI)와 비교하여 기상학적 가뭄이 수문학적 가뭄으로 전이되는 과정을 가뭄의 빈도, 강도, 특성 등에 초점을 맞추어 분석하였다.

  • PDF

A Bioactive Fraction from Streptomyces sp. Enhances Maize Tolerance against Drought Stress

  • Warrad, Mona;Hassan, Yasser M.;Mohamed, Mahmoud S.M.;Hagagy, Nashwa;Al-Maghrabi, Omar A.;Selim, Samy;Saleh, Ahmed M.;AbdElgawad, Hamada
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.8
    • /
    • pp.1156-1168
    • /
    • 2020
  • Drought stress is threatening the growth and productivity of many economical crops. Therefore, it is necessary to establish innovative and efficient approaches for improving crop growth and productivity. Here we investigated the potentials of the cell-free extract of Actinobacteria (Ac) isolated from a semi-arid habitat (Al-Jouf region, Saudi Arabia) to recover the reduction in maize growth and improve the physiological stress tolerance induced by drought. Three Ac isolates were screened for production of secondary metabolites, antioxidant and antimicrobial activities. The isolate Ac3 revealed the highest levels of flavonoids, antioxidant and antimicrobial activities in addition to having abilities to produce siderophores and phytohormones. Based on seed germination experiment, the selected bioactive fraction of Ac3 cell-free extract (F2.7, containing mainly isoquercetin), increased the growth and photosynthesis rate under drought stress. Moreover, F2.7 application significantly alleviated drought stress-induced increases in H2O2, lipid peroxidation (MDA) and protein oxidation (protein carbonyls). It also increased total antioxidant power and molecular antioxidant levels (total ascorbate, glutathione and tocopherols). F2.7 improved the primary metabolism of stressed maize plants; for example, it increased in several individuals of soluble carbohydrates, organic acids, amino acids, and fatty acids. Interestingly, to reduce stress impact, F2.7 accumulated some compatible solutes including total soluble sugars, sucrose and proline. Hence, this comprehensive assessment recommends the potentials of actinobacterial cell-free extract as an alternative ecofriendly approach to improve crop growth and quality under water deficit conditions.

Evaluation of Drought Impact and Function Improvement Effect of Agricultural Hydraulic Structures (농업수리구조물의 가뭄 영향 및 기능개선 효과 분석)

  • Lee, Jae-young;Kim, Hwang-hee;Shin, Hyung-jin;Kim, Hae-do;Kwon, Hyung-joong;Jeon, Jong-chan;Cha, Sang-sun;Park, Chan-gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.3
    • /
    • pp.1-13
    • /
    • 2018
  • Recently, the frequency and intensity of drought have been increasing due to the sudden abnormal climate in Korea. The occurrence of agricultural drought has been steadily increasing from 5 times in the 1980s to 2000s in 20 years, 6 times in the 10 years from 2000 to 2010, and 4 times in the recent period from 2011 to 2015. Therefore, this study analyzed the effect of water shortage caused by drought by improving the function of agricultural reservoir. The target area analyzed the data such as "Comprehensive Information System for Rural Water" operated by Korea Rural Community Corporation. As a result, we selected the target area as Wanju - gun, Jeollabuk - do in consideration of the rate of water storage compared with the normal 25 years, the completion year of the facility, the area of coverage per reservoir site and the low capacity. As a result of evaluating the improvement effect of agricultural facilities, it was analyzed that the irrigation area increased by about 25.7% when the water level was increased by 1m and the irrigation area increased by about 51.3% when the water level was increased by 2m. The results of the drought impact assessment after improving the function of the agricultural facilities were analyzed that it was effective to improve the function after more than 4m depth.