• 제목/요약/키워드: drought assessment

검색결과 302건 처리시간 0.031초

가뭄 취약지역의 관정 효율 및 능력에 대한 취약성평가 (Vulnerability Evaluation of Groundwater Well Efficiency and Capacity in Drought Vulnerable Areas)

  • 신형진;이재영;조성문;전상민;김미솔;차상선;박찬기
    • 한국농공학회논문집
    • /
    • 제61권6호
    • /
    • pp.41-53
    • /
    • 2019
  • Recently, the damage caused by climate change has been distinguished in the world. The Korean Peninsula is also suffering from drought, so it is necessary to study the vulnerability assessment to identify and predict the state of the irrigation facility, which is a irrigation facility. As the damage caused by drought is occurring in the Korean peninsula, it is necessary to study the vulnerability assessment to know the condition of the irrigation facility, and to predict it. The target areas were Yeongdong-gun, Cheonan-si, Mungyeong-si, Geochang-gun, Muju-gun, and Yeonggwang-gun. The survey items were selected as positive impacts survey items, including precipitation, groundwater level, and pumping capacity per groundwater well. The negative impacts were selected as the cultivation acreage, Number of days without rain, and the ratio of private underground wells. The survey method was investigated by various methods such as "weather data portal", "groundwater level status information", "agricultural drought management system", "groundwater survey yearbook". The results of vulnerability assessment were expressed by the score by conducting survey and standardization. As a result, Yeonggwang-gun showed normal vulnerability, and other areas showed "vulnerable" or "very vulnerable".

기후변화가 서울지역의 기온 및 가뭄에 미치는 영향 평가 : AR4 SRES A2 시나리오를 기반으로 (Assessment of Climate Chanage Effect on Temperature and Drought in Seoul : Based on the AR4 SRES A2 Senario)

  • 경민수;이용원;김형수;김병식
    • 대한토목학회논문집
    • /
    • 제29권2B호
    • /
    • pp.181-191
    • /
    • 2009
  • 본 연구에서는 2007년 IPCC AR4와 함께 제시된 SRES A2 시나리오를 이용해서 기후변화가 한반도 가뭄에 미치는 영향을 평가하기 위한 방안을 제시하고자 한다. IPCC는 DDC를 통해서 총 24개의 기후모형의 결과를 월 단위로제공하고 있다. 이 중 노르웨이 BCCR의 BCM2 모형과 NCEP 자료를 이용하여 최근린법(K-NN)과 인공신경망(Artificial Neural Network)이론을 적용함으로써, 온도와 강수량을 기상청 산하 서울지점으로 축소하였다. 최근린법의 경우, 온도와 강수량 모두를 축소하는 것이 가능하였지만, 인공신경망이론을 적용하여 축소할 경우, 온도는 비교적 잘 축소하였으나 강수량의 경우는 발산하는 결과를 보였다. 마지막으로 기후변화가 가뭄에 미치는 영향을 평가하기 위해서 최근린법으로부터 축소된 월 단위 강수량을 이용하여 서울지점의 표준강수지수를 산정하였다. BCM2 모형에 의하면 서울지점의 경우, 미래에는 전반적으로 온도가 증가하고 가뭄의 지속기간이 길어짐에 따라 가뭄이 더욱더 심각하게 된다는 결과를 예측하였다.

토양수분지수를 이용한 유역단위 가뭄 평가 (Watershed Scale Drought Assessment using Soil Moisture Index)

  • 김옥경;최진용;장민원;유승환;남원호;이주헌;노재경
    • 한국농공학회논문집
    • /
    • 제48권6호
    • /
    • pp.3-13
    • /
    • 2006
  • Although the drought impacts are comparably not catastrophic, the results from the drought are fatal in various social and economical aspects. Different from other natural hazards including floods, drought advances slowly and spreads widely, so that the preparedness is quite important and effective to mitigate the impacts from drought. Soil moisture depletion directly resulted from rainfall shortage is highly related with drought, especially for crops and vegetations, therefore a drought can be evaluated using soil moisture conditions. In this study, SMI (Soil Moisture Index) was developed to measure a drought condition using soil moisture model and frequency analysis for return periods. Runs theory was applied to quantify the soil moisture depletions for the drought condition in terms of severity, magnitude and duration. In 1994, 1995, 2000, and 2001, Korea had experienced several severe droughts, so the SMI developed was applied to evaluate applicability in the mid-range hydrologic unit watershed scale. From the results, SMI demonstrated the drought conditions with a quite sensitive manner and can be used as an indicator to measure a drought condition.

기상학적, 농업학적, 수문학적 가뭄지수를 이용한 청미천 유역의 가뭄 분석 (Drought analysis of Cheongmicheon watershed using meteorological, agricultural and hydrological drought indices)

  • 원광재;정은성
    • 한국수자원학회논문집
    • /
    • 제49권6호
    • /
    • pp.509-518
    • /
    • 2016
  • 본 연구는 1985년부터 2015년까지 지속기간에 따른 청미천 유역의 가뭄을 분석하였다. 가뭄의 정량적 평가를 위해 기상학적 가뭄지수와 수문학적 가뭄지수를 사용하였다. 기상학적 가뭄지수로는 강수량을 변수로 하는 SPI(Standarized Precipitation Index)와 강수량과 증발산량을 변수로 하는 SPEI(Standarized Precipitation Evapotranspiration Index)를 사용하였다. SWAT 모형의 모의를 통해 도출된 결과를 바탕으로 농업학적 가뭄지수인 PDSI(Palmer Drought Severity Index)와 수문학적 가뭄지수인 SDI(Streamflow Drought Index)를 적용하였다. 산정 결과, 극한 및 평균 가뭄의 평균에서 2015년과 2014년이 가장 가뭄에 취약함이 확인되었다. 빈도분석에 따른 가뭄의 변동성은 서로 다른 형태를 보였다. 또한 상관분석에서 극한 가뭄 및 평균 가뭄은 PDSI를 제외한 SPI, SPEI, SDI 가뭄지수간에는 높은 상관관계가 확인되었다. 하지만 각 가뭄지수는 서로 다른 극한가뭄의 시기 및 강도를 보였다. 따라서 가뭄분석시 다양한 특성을 지닌 가뭄지수를 활용하는 것이 필요하다.

Assessment of Drought on the Goseong-Sokcho Forest Fire in 2019 using Multi-year High-Resolution Synthetic Precipitation Data

  • Sim, Jihan;Oh, Jaiho
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.379-379
    • /
    • 2020
  • The influence of drought has increased due to global warming. In addition, forest fires have occurred more frequently due to droughts and resulted in property losses and casualty. In this study, the effects of drought on Goseong-Sokcho Forest Fire in 2019 were analyzed using high-resolution synthetic precipitation data. In order to determine the severity of drought, the average, 20%tile and 80%ile values were calculated using the synthetic precipitation data of the past 30 years and compared with the current climatology. We have investigated the multi-year accumulated precipitation data to determine the persistence of drought. In Goseong-Sokcho forest fire case, the two-year cumulative synthetic precipitation data shows a similar value to the climate, but the three-year cumulative synthetic precipitation data was close to the 20%ile lines of the climate value. It may expose that the shortage of precipitation in 2017 had persisted until 2019, despite abundant precipitation during the summer in 2018. Therefore, Goseong-Sokcho forest fire might be spread more rapidly by drought which has been persisted since 2017.

  • PDF

농업가뭄인자 미계측 지역의 농업가뭄 추정을 위한 기상학적 가뭄지수의 활용성 평가 (Availability Assessment of Meteorological Drought Index for Agricultural Drought Estimation in Ungauged Area of Agricultural Drought Parameter)

  • 박민우;김선주;권형중;김필식;강승묵;이재혁
    • 한국농공학회논문집
    • /
    • 제59권5호
    • /
    • pp.127-136
    • /
    • 2017
  • The object of this study was to assess availability of meteorological drought index for agricultural dorught estimation in ungauged area of agricultural drought parameters which are reservoir water level and soil moisture. The IADI (Integrated Agricultural Drought Index) and the SPI (Standard Precipitation Index), which are the criteria for determining agricultural drought and meteorological drought, were calculated and compared. For this purpose, the droughts that occurred in the Baeksan reservoir in Gimje and the Edong reservoir in Suwon were evaluated by using the IADI and SPI drought indecies. In addition, we compared and analyzed the depth of drought based on the two drought indices. Evaluations derived form the IADI and SPI showed that the standard precipitation index tended to indicate the occurrence of drought earlier than the integrated agricultural drought index. However, the integrated agricultural drought index was better than the standard precipitation index at evaluating the severity of drought during the period of irrigation. The relationship between these two drought indices seems to be useful for decision making in the case of drought, and it is considered that more studies are needed to examine the applicability of these drought indexes.

지역기반 농업용수의 가뭄재해 취약성 평가 (Evaluation of Regional Drought Vulnerability Assessment Based on Agricultural Water and Reservoirs)

  • 문영식;남원호;전민기;김한중;강구;이정철;하태현;이광야
    • 한국농공학회논문집
    • /
    • 제62권2호
    • /
    • pp.97-109
    • /
    • 2020
  • Drought is one of the most influential disasters in sustainable agriculture and food security of nations. In order to preemptively respond to agricultural droughts, vulnerability assessments were conducted to predict the possibility of drought in the region, the degree of direct or indirect damage, and the ability to cope with the damage. Information on agricultural drought vulnerability status of different regions is extremely useful for implementation of long term drought management measures. The purpose of this study is to develop and implement a quantitative approach for measuring agricultural drought vulnerability at sub-district level based on agricultural water and reservoirs. To assess the vulnerability in a quantitative manner and also to deal with different physical and socioeconomic data on the occurrence of agricultural drought, we selected the appropriate factors for the assessment of agricultural drought vulnerability through preceding studies, and analyzed the meteorological and agricultural reservoir data from 2015 to 2018. Each item was weighted using AHP (Analytic Hierarchy Process) analysis and evaluated through the agricultural drought vulnerability estimation. The entire national vulnerability assessments showed that Ganghwa, Naju, and Damyang were the most vulnerable to agricultural droughts. As a result of analyzing spatial expression, Gyeongsang-do is relatively more vulnerable to drought than Gangwon-do and Gyeonggi-do. The results revealed that the methodology and evaluation items achieved good performance in drought response. In addition, vulnerability assessments based on agricultural reservoir are expected to contribute supporting effective drought decisions in the field of agricultural water management.

무인항공기와 GIS를 이용한 논 가뭄 발생지역 분석 (Analysis of Rice Field Drought Area Using Unmanned Aerial Vehicle (UAV) and Geographic Information System (GIS) Methods)

  • 박진기;박종화
    • 한국농공학회논문집
    • /
    • 제59권3호
    • /
    • pp.21-28
    • /
    • 2017
  • The main goal of this paper is to assess application of UAV (Unmanned Aerial Vehicle) remote sensing and GIS based images in detection and measuring of rice field drought area in South Korea. Drought is recurring feature of the climatic events, which often hit South Korea, bringing significant water shortages, local economic losses and adverse social consequences. This paper describes the assesment of the near-realtime drought damage monitoring and reporting system for the agricultural drought region. The system is being developed using drought-related vegetation characteristics, which are derived from UAV remote sensing data. The study area is $3.07km^2$ of Wonbuk-myeon, Taean-gun, Chungnam in South Korea. UAV images were acquired three times from July 4 to October 29, 2015. Three images of the same test site have been analysed by object-based image classification technique. Drought damaged paddy rices reached $754,362m^2$, which is 47.1 %. The NongHyeop Agricultural Damage Insurance accepted agricultural land of 4.6 % ($34,932m^2$). For paddy rices by UAV investigation, the drought monitoring and crop productivity was effective in improving drought assessment method.

Future drought assessment in the Nakdong basin in Korea under climate change impacts

  • 김광섭;노반콴
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.458-458
    • /
    • 2012
  • Climate extreme variability is a major cause of disaster such as flood and drought types occurred in Korea and its effects is also more severe damage in last decades which can be danger mature events in the future. The main aim of this study was to assess the effectives of climate change on drought for an agriculture as Nakdong basin in Korea using climate change data in the future from data of General Circulation Models (GCM) of ECHO-G, with the developing countries like Korea, the developed climate scenario of medium-high greenhouse gas emission was proposed of the SRES A2. The Standardized Precipitation Index (SPI) was applied for drought evaluation. The drought index (SPI) applied for sites in catchment and it is evaluated accordingly by current and future precipitation data, specific as determined for data from nine precipitation stations with data covering the period 1980-2009 for current and three periods 2010-2039, 2040-2069 and 2070-2099 for future; time scales of 3month were used for evaluating. The results determined drought duration, magnitude and spatial extent. The drought in catchment act intensively occurred in March, April, May and November and months of drought extreme often appeared annual in May and November; drought frequent is a non-uniform cyclic pattern in an irregular repetitive manner, but results showed drought intensity increasing in future periods. The results indicated also spatial point of view, the SPI analysis showed two of drought extents; local drought acting on one or more one of sites and entire drought as cover all of site in catchment. In addition, the meteorology drought simulation maps of spatial drought representation were carried out with GIS software to generate for some drought extreme years in study area. The method applied in this study are expected to be appropriately applicable to the evaluation of the effects of extreme hydrologic events, the results also provide useful for the drought warning and sustainable water resources management strategies and policy in agriculture basins.

  • PDF