• Title/Summary/Keyword: droplet diameter

Search Result 391, Processing Time 0.023 seconds

Theoretical Analysis and Experimental Characterization of DoD Metal-Jet System (DoD 메탈젯 시스템의 이론적 해석 및 실험적 분석)

  • Lee, Taik-Min;Kang, Tae-Goo;Yang, Jeong-Soon;Jo, Jeong-Dai;Kim, Kwang-Young;Choi, Byung-Oh;Kim, Dong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.11-17
    • /
    • 2007
  • In this paper, we present a design, analysis, fabrication and performance test of the novel DoD metal-jet system for application to the high-density and high-temperature-melting materials. The theoretical analysis of the metal-jet nozzle system is derived by using electro-mechanical analogy. Based on the theoretical analysis results, we design the metal-jet print head system and fabricate the metal-jet system, which can eject the droplet of lead-free metal solder in high-temperature. In the experimental test, we set up the test apparatus for visualization of the droplet ejection and measure the ejected droplet volume and velocity. As a result, the diameter, volume and the velocity of the ejected droplet are about 65 $\mu$m $\sim$ 70 $\mu$m, 145p1 $\sim$ 180 pl and 4m/s, which shows quite good agreement with the theoretical analysis results of the 75 $\mu$m-diameter and 220 pl-volume of droplet. In comparison with the experimental result, the errors of diameter and volume are 7% $\sim$ 13% and 18 $\sim$ 34%, respectively.

A Study of the Behavior of Droplet Impacting on a Horizontal Wire (수평 와이어와 충돌하는 액적 거동에 관한 연구)

  • Kang, W.J.;Kim, J.Y.;Park, J.H.;Kang, B.S.
    • Journal of ILASS-Korea
    • /
    • v.25 no.3
    • /
    • pp.103-110
    • /
    • 2020
  • In this study, the behavior of water droplet impacting on a thin horizontal wire was visualized by time-delay photography. The impact behavior modes, critical capture speed and trapped mass were analyzed by changing the droplet size, velocity, wire diameter and eccentricity ratio. As the Weber number increased, the hanging, merging, and splitting modes appeared sequentially for the case of central impact, and the hanging and non-splitting modes appeared for the case of off-center impact. The boundary We number of each mode was affected by the diameter ratio. The critical capture speed was affected much by the degree of eccentricity. For all diameter ratios, it was higher for the case of central impact than for off-center impact. The trapped mass was larger for the case of central impact than for off-center impact and it increased with the smaller We number and the larger diameter ratio.

A Study on the Simultaneous Measurement of Droplet Size and Velocity in a Diesel Fuel Spray (디젤 분무(噴霧) 액적(液滴)의 크기와 속도(速度) 동시계측(同時計測)에 관한 연구(硏究))

  • Chang, Y.J.;Jeon, C.H.;Park, H.l.;Kim, H.K.;Kim, S.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.11-22
    • /
    • 1994
  • The pupose of this study is to measure droplet size and velocity simultaneously for a transient diesel fuel spray in a quiescent chamber at atmospheric temperature and pressure. Generally, diesel combustion phenomena is mainly governed by characteristics of injection system and fuel spray. Therefore we need to clarify these characteristics for developing more economical diesel systems. In this study, correlation between droplet size and velocity was measured at downstream distance from nozzle. Governing parameters are pump speed and fuel quantity for the detailed nature in this transient diesel fuel spray. It is observed effect to the droplet size and velocity distribution. Velocity(peak, mean, rms), number density and droplet size were investigated simulaneously using PDA in the spray. Various results are presented to illustrate the effects of operation factors and correlation between the droplet diameter and velocity.

  • PDF

Behavior of an Impinging Droplet on a Solid Surface with a Variation of Liquid Temperature (액체 온도 변화에 따른 평판 충돌 액적의 거동에 관한 연구)

  • Lee Dong Jo;Park Byung Sung;Chung Jin Taek;Kim Ho Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.3 s.234
    • /
    • pp.330-339
    • /
    • 2005
  • An experimental study on the behavior of droplets impinging on a solid flat surface was carried out in the present study. Breakup of a liquid droplet impinging on a solid surface has been investigated experimentally for various liquids with different properties. The liquid droplet temperature and incident angle were chosen as major parameters. Liquid droplet temperature and incident angle varied in the range from $-20{\circ}C\;to\;30{\circ}C\;and\;from\;30{\circ}\;to\;60{\circ},$ respectively. It was found that the variation of droplet temperature influences upon the mean diameter and uniformity of droplets which were bounced out from the solid surface. With increase of incident angle the dispersion mass fraction increases, causing the decrease of liquid film flow rate. As the liquid temperature increases, dispersion mass fraction increases since the surface tension decreases.

Spreading and Deposition Characteristics of a Water Droplet Impacting on Hydrophobic Textured Surfaces (소수성 텍스쳐 표면에 충돌한 단일 액적의 퍼짐 및 고착 특성)

  • Lee, Jae-Bong;Moon, Joo-Hyun;Lee, Seong-Hyuk
    • Journal of ILASS-Korea
    • /
    • v.17 no.1
    • /
    • pp.14-19
    • /
    • 2012
  • The present study conducts experimental investigation on spreading and deposition characteristics of a $4.3{\mu}l$ de-ionized (DI) water droplet impacting upon aluminum (Al 6061) flat and textured surfaces. The micro-textured surface consisted the micro-hole arrays (hole diameter: $125{\mu}m$, hole depth: $125{\mu}m$) fabricated by the conventional micro-computer numerical control (${\mu}$-CNC) milling machine process. We examined the surface effect of texture area fraction ${\varphi}_s$ ranging from 0 to 0.57 and impact velocity of droplet ranging from 0.40 m/s to 1.45 m/s on spreading and deposition characteristics from captured images. We used a high-speed camera to capture sequential images for investigate spreading characteristics and the image sensor to capture image of final equilibrium deposition droplet for analyze spreading diameter and contact angle. We found that the deposition droplet on textured surfaces have different wetting states. When the impact velocity is low, the non-wetting state partially exists, whereas over 0.64 m/s of impact velocity, totally wetting state is more prominent due to the increase kinetic energy of impinging droplet.

Experimental Investigation of Collision Mechanisms Between Binary Droplet of Fuel Jet (연료 제트의 두 액적간의 충돌기구에 관한 실험적 연구)

  • Lee, Keun-Hee;Kim, Sa-Yop;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.13 no.4
    • /
    • pp.187-192
    • /
    • 2008
  • In this study, the mechanisms of binary droplet collision were studied with diesel, ethanol and purified water. The droplet collisions of liquid droplet have been investigated for the same droplet diameter. In order to obtain the digital images of the droplet collision behavior, the experimental equipment was composed of the droplet generating system and the droplet visualization system. The droplets were produced by the vibrating orifice monodisperse generator. The visualization system consisted of a long distance microscope, a light source, and a high speed camera. The outcomes of binary droplet collision can be divided into four regimes, bouncing, coalescence, reflexive separation and stretching separation. The impact angle and the relative velocity of binary droplet are main parameters of collision phenomena, so the transition mechanism of droplet collision can be divided by the impact parameter.

  • PDF

Relationships between Airborne Droplet and Impression Diameters in Small Droplets (작은 분무입자(噴霧粒子)에 있어서 원형분무입자(原形噴霧粒子) 직경(直徑)과 살포(撒布)된 입자직경(粒子直徑)의 관계(關係))

  • Lee, Sang-Woo
    • Korean Journal of Agricultural Science
    • /
    • v.6 no.2
    • /
    • pp.192-197
    • /
    • 1979
  • Spread factors were tried to determine the diameter of airborne droplet emitted: from the sprayer by the measurements of airborne droplet diameter emitted from the uniform size droplet producer and impression diameter on Kromekote card or Eucalypt's leaf in the different dilute concentration with Geigy Red Herbicide Dye from 0.5% to 2% by weight. The results abtained were as follows; The general form of the equation in the relationship between airborne droplet and impression diameter on Kromekote card or Eucalypt's leaf was an exponential equation as follows; $$Y=aX^b$$ which gave a linear relation on log-log graph paper. The spread factor seemed to be larger in the thin dilute concentration than in the thick dilute concentration. The spread factor was remarkably smaller on Eucalypt's leaf than on Kromekote card due to the penetration of liquid into the leaf and the stomata of the epidermis. The calculated equation of the mean depth of the droplet sprayed on Eucalypt's leaf was the same form as $Y=aX^b$, which implied that the spray liquid was distributed in surplus in accordance with the diameter of the droplet larger than the optimum size droplet to control insect and disease.

  • PDF

Electrohydrodynamic Characteristics of an Electro-Spray System (전기 분무 시스템의 전기수력학적 특성)

  • Lee, Jae-Bok;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.1031-1039
    • /
    • 1999
  • Electrospraying comprises the generation of liquid droplets by applying a high voltage to the surface of a liquid. By monitoring the current and the flow rate it was possible to obtain a stable cone jet mode in a given condition. In this work the liquid contained NaCl particles resolved in distilled water. The NaCl particles increased concentration of the ionized solution and thus increased electrical conductivity of the liquid, which was inversely proportional to the flow rate in the cone jet mode. A number of sprayed droplets were sampled and dried enough, and then the size of NaCl particles were measured. The measured droplet diameter was a little larger than two theoretical diameters, Rayleigh diameter and mobility diameter.

Analysis of Correclations between Flow Rate, Pressure and Average Size of Droplet with Hydraulic Diameter of Water Curtain Nozzle (수막설비용 노즐의 수력직경 변화에 따른 방사유량, 방사압 그리고 액적의 평균 크기 상관관계 분석)

  • Park, Jung Wook;Shin, Yeon Je;You, Woo Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.317-323
    • /
    • 2020
  • In this study, the correlations between flow rate, exhaust pressure, and droplet mean diameter with the shape factor of a water curtain nozzle were investigated. To analyze the flow coefficient and the distribution constant on the effects of the hydraulic diameter, five nozzles (D5W3, D5W6, D5W8, D4W6, and D7W6) were mocked up with a consideration of the internal diameter and width. The results showed that the flow coefficient increased in proportion to the constant 0.79 and 62.8 of the hydraulic diameters according to the diameter. As the nozzle width increased, the average droplet size decreased to the -0.235 exponential of the pressure. The average volume was reduced, in which the size distribution of the volume indeterminate decreased with increasing pressure for the same nozzle of the water-curtain. The distribution constants of droplet increased in proportion to the 0.258 exponential of the hydraulic diameter and 244.21. These results are expected to be useful to the design of pressure, flow meter, and average droplet size from a water curtain nozzle to predict the flow characteristics.

Effects of Surface Roughness on Evaporation Cooling of Single Water Droplet in Radiative Fields (복사장 내에서 충돌면의 표면조도가 단일액적 증발냉각에 미치는 영향)

  • 유갑종;박철우;장충선
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.467-474
    • /
    • 2004
  • This paper presents the results of an experimental investigation for the effect of radiant heat on the evaporation cooling of water droplet in the process of fire extinguishing. The experiments are mainly focused on the surface temperature, the surface roughness and the droplet diameter. The range of surface temperature is T$_{s}$ =80-14$0^{\circ}C$, surface roughness is R$_{a}$=0.08-0.64 ${\mu}{\textrm}{m}$ and the droplet diameter is $\Phi$=3.0 mm in the radiation. The results show that the evaporation time is shorter for the larger surface roughness and the volume of droplet increased when the surface roughness is 0.64 ${\mu}{\textrm}{m}$ at the surface temperature 127$^{\circ}C$. When the surface roughness is 0.64 ${\mu}{\textrm}{m}$, the heat flux is larger than the surface roughness is 0.08 ${\mu}{\textrm}{m}$ at the surface temperature 81$^{\circ}C$.>.>.