• 제목/요약/키워드: droplet's size

검색결과 152건 처리시간 0.029초

DOP가스의 액적형성에 미치는 온도경사 및 체류시간의 영향 (Effect of temperature gradient and residence time on droplet formation of gaseous Di-Octyl Phthalate)

  • 이명화;박병현
    • 한국입자에어로졸학회지
    • /
    • 제6권1호
    • /
    • pp.1-7
    • /
    • 2010
  • Generally, large amounts of DOP(Di-Octyl Phthalate) chemicals are used as plasticizers in PVC compound manufacturing processes. However, it is very important to collect DOP species immediately from a workplace in order to protect worker's heath and recover them. To accomplish these objectives, we need to understand the droplet formation and growth mechanisms of DOP species. In this study, two important parameters such as temperature gradient and residence time were considered to clarify these mechanisms. We found that residence time is very critical to determine the droplet size distribution of DOP, whereas temperature gradient in general operating conditions(less than $-6.8^{\circ}C/cm$) is negligible.

Comparison of Metal Transfer Behavior in Electrodes for Shielded Metal Arc Welding

  • Xu, X.;Liu, S.;Bang, K.S.
    • International Journal of Korean Welding Society
    • /
    • 제4권1호
    • /
    • pp.15-22
    • /
    • 2004
  • Metal transfer behavior of three shielded metal arc welding electrodes, AWS El1018, E6013 and E6010, were investigated through the characterization of size distribution of droplets and measurement of arc voltage signals. Of the three electrodes, Ell018 electrode showed the largest droplet size with the smallest amount of spatter, while E6010 electrode showed the smallest droplet size with the largest amount of spatter. Even though Ell0l8 electrode showed a good agreement between the frequencies of voltage drop in FFT processed voltage signals and the transfer rate of droplets, E6013 and E6010 electrodes showed weaker correlation because of their dominant explosive transfer behavior. The type of cathode used and electrode baking time also influenced the metal transfer behavior. Compared to bead-on-plate welding using steel plate as a cathode, welding on a water-cooled copper pipe showed less short-circuiting and higher melting rate in all electrodes because of higher arc potential and/or anode drop. When baked for a long time, E6010 electrode showed much more stable arc with less short-circuiting and explosion due to the loss of gas formation ingredients.

  • PDF

실험실적 규모의 분무흡수건조반응기의 배출가스 중 아황산가스 처리성능 연구 (Flue Gas Sulfur Dioxide Removal Performance of a Bench-Scale Spray Absorption/Drying Reactor)

  • 동종인;구우회;임대현
    • 한국대기환경학회지
    • /
    • 제12권4호
    • /
    • pp.449-457
    • /
    • 1996
  • The main purpose of this study was to investigate sulfur dioxide removal performance of flue gas desulfurization system utilizing a Spray Absorption/Drying Reactor. In this system, the size of droplets was considered the most significant factor and tested using a PDA system. Lime slurry flow rate, operating temperature, calcium/sulfur (Ca/S) ratio and applied air pressure were selected as major operation variables and tested/analyzed in terms of system performance. The results are as follows. 1. The $SO_2$ removal efficiencies were 49%, 74%, 85% for Ca$(OH)_2$ slurry flow rate of 10, 20, 30 ml/min, which implies that the increase of slurry flow rate improves removal efficiency. The optimum slurry flow rate in this study was, however, considered 20 ml/min because of constraints of system troubles and absorbent utilization. 2. As Ca/S ratio increased, $SO_2$ removal efficiency was observed to increase. 3. As air pressure, at the atomizing nozzole, increased from 3 to 5 $kg/cm^2, SO_2$ removal efficiency increased from 74% to 80%, because of droplet size reduction due to pressure increase during atomizing process and the increase of surface area, helping mass transfer between gas and liquid phase.

  • PDF

액적 충돌 현상에 관한 수치해석 (A NUMERICAL ANALYSIS ON THE COLLISION BEHAVIOR OF WATER DROPLETS)

  • 남현우;백제현
    • 한국전산유체공학회지
    • /
    • 제11권3호
    • /
    • pp.14-21
    • /
    • 2006
  • A numerical simulation of the binary collision dynamics of water drops for size ratios of 1 and 0.75, for the Weber number range of 5 to 100, and for all impact parameter is reported. Two different types of separating collisions, namely reflexive and stretching separations, are identified. A numerical method is based on a fractional-step method with a finite volume formulation and the interface is tracked with Volume of Fluid(VOF) method, including surface tension. Numerical results for size ratios 1 and 0.75 are reasonablely compared with Ashgriz and Poo's experimental results.

Properties of Oil-in-Water Nano-emulsions Prepared from Hydrogenated Lecithin with High Pressure Homogenizer

  • Cho, Wan-Goo;Bae, Duck-Whan
    • 한국응용과학기술학회지
    • /
    • 제28권1호
    • /
    • pp.1-5
    • /
    • 2011
  • In this study, We investigated the properites of nano-emulsions containing hydrogenated lecithin prepared by high pressure homogenizer. The size of droplet of emulsions prepared by homogenizer at various rpm (rotation per minute) was not measured due to the unstability of emulsions, however, the size of droplet of nano-emulsions prepared by high pressure homogenizer was around 300 nm and the appearance of emulsions was bluish. The stability of emulsions with various lecithin concentration was tested against time. POV (Peroxide value) of emulsions were plotted against time. POVs of emulsions prepared with an egg lecithin and a soy lecithin were increased with time, however, POV of emulsion with Lecinol S-$10^{(R)}$ was kept constant within 60 hours and at $60^{\circ}C$. In consumer test, the nano-emulsion showed higher affinity regardless of skin type. Both of irritation scores of emulsions were similar.

경유-벙커C유 혼합연료의 분무 특성에 관한 연구 (A Study on the Characteristics of the Mixed Light-BC Oil Sprays)

  • 윤면근;조성철;최영구;류정인
    • 한국분무공학회지
    • /
    • 제2권3호
    • /
    • pp.25-31
    • /
    • 1997
  • This experiment was undertaken to investigate the spray characteristics of the conventional injection system and the ultrasonic energy added injection system. Test fuels include light oil and mixed light-BC oil. The mixed light-BC oil was injected at the normal temperature$(20^{\circ}C)$ and the high temperature$(95{\pm}2^{\circ}C)$ and injection pressure was $120kg/cm^2$. Sauter mean diameter was measured under the variation of the spray distance. To measure the droplet size, we used the Malvern system 2600C. Droplet size distribution was analyzed from the result data of Malvern system. It is also found that the condition of the ultrasonic energy added injection and high temperature injection generates the smaller droplets than that of the conventional injection.

  • PDF

수평 와이어와 충돌하는 액적 거동에 관한 연구 (A Study of the Behavior of Droplet Impacting on a Horizontal Wire)

  • 강원준;김준영;박지훈;강보선
    • 한국분무공학회지
    • /
    • 제25권3호
    • /
    • pp.103-110
    • /
    • 2020
  • In this study, the behavior of water droplet impacting on a thin horizontal wire was visualized by time-delay photography. The impact behavior modes, critical capture speed and trapped mass were analyzed by changing the droplet size, velocity, wire diameter and eccentricity ratio. As the Weber number increased, the hanging, merging, and splitting modes appeared sequentially for the case of central impact, and the hanging and non-splitting modes appeared for the case of off-center impact. The boundary We number of each mode was affected by the diameter ratio. The critical capture speed was affected much by the degree of eccentricity. For all diameter ratios, it was higher for the case of central impact than for off-center impact. The trapped mass was larger for the case of central impact than for off-center impact and it increased with the smaller We number and the larger diameter ratio.

정전기력에 의한 액적 토출 분석 (Analysis of Electrostatic Ejection for Liquid Droplets)

  • 김용재;이석한;변도영;손상욱;정대원;고한서
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.505-508
    • /
    • 2006
  • An electrostatic ink jet head can be used for manufacturing processes of large display systems and printed circuit boards (PCB) as well as inkjet printers because an electrostatic field provides an external force which can be manipulated to control sizes of droplets. The existing printing methods such as thermal bubble and piezo inkjet heads have shown difficulties to control the ejection of the droplets for printing applications. Thus, the new inkjet head using the electrostatic force has been proposed in this study. In order to prove the theory of the developed electrostatic ink jet head, the applicable and basic theory has been studied using distilled water and water with sodium dodecyl surfate (SDS). Also, a numerical analysis has been performed to calculate the intensity of the electrostatic field using the Maxwell's equation. Furthermore, experiments have been carried out using a downward glass capillary with outside diameter of $500{\mu}m$. The gravity, surface tension, and electrostatic force have been analyzed with high voltages of 0 to 5kV. It has been observed that the droplet size decreases and the frequency of the droplet formation and the velocity of the droplet ejection increase with increasing the intensity of the electrostatic field. The results of the experiments have shown good agreement with those of numerical analysis.

  • PDF

배관 침부식 손상 연속모사 장비 개발 및 실증 (Development and demonstration of an erosion-corrosion damage simulation apparatus)

  • 남원창;류경하;김재형
    • Corrosion Science and Technology
    • /
    • 제12권4호
    • /
    • pp.179-184
    • /
    • 2013
  • Pipe wall thinning caused by erosion and corrosion can adversely affect the operation of aged nuclear power plants. Some injured workers owing to pipe rupture has been reported and power reduction caused by unexpected pipe damage has been occurred consistently. Therefore, it is important to develop erosion-corrosion damage prediction model and investigate its mechanisms. Especially, liquid droplet impingement erosion(LDIE) is regarded as the main issue of pipe wall thinning management. To investigate LDIE mechanism with corrosion environment, we developed erosion-corrosion damage simulation apparatus and its capability has been verified through the preliminary damage experiment of 6061-Al alloy. The apparatus design has been based on ASTM standard test method, G73-10, that use high-speed rotator and enable to simulate water hammering and droplet impingement. The preliminary test results showed mass loss of 3.2% in conditions of peripheral speed of 110m/s, droplet size of 1mm-diameter, and accumulated time of 3 hours. In this study, the apparatus design revealed feasibility of LDIE damage simulation and provided possibility of accelerated erosion-corrosion damage test by controlling water chemistry.

Effects of vessel-pipe coupled dynamics on the discharged CO2 behavior for CO2 sequestration

  • Bakti, Farid P.;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • 제10권3호
    • /
    • pp.317-332
    • /
    • 2020
  • This study examines the behaviors and properties of discharged liquid CO2 from a long elastic pipe moving with a vessel for the oceanic CO2 sequestration by considering pipe dynamics and vessel motions. The coupled vessel-pipe dynamic analysis for a typical configuration is done in the frequency and time domain using the ORCAFLEX program. The system's characteristics, such as vessel RAOs and pipe-axial-velocity transfer function, are identified by applying a broadband white noise wave spectrum to the vessel-pipe dynamic system. The frequency shift of the vessel's RAO due to the encounter-frequency effect is also investigated through the system identification method. Additionally, the time histories of the tip-of-pipe velocities, along with the corresponding discharged droplet size and Weber numbers, are generated for two different sea states. The comparison between the stiff non-oscillating pipe with the flexible oscillating pipe shows the effect of the vessel and pipe dynamics to the discharged CO2 droplet size and Weber number. The pipe's axial-mode resonance is the leading cause of the fluctuation of the discharged CO2 properties. The significant variation of the discharged CO2 properties observed in this study shows the importance of considering the vessel-pipe motions when designing oceanic CO2 sequestration strategy, including suitable sequestration locations, discharge rate, towing speed, and sea states.