• 제목/요약/키워드: driving unit

검색결과 431건 처리시간 0.024초

RESISTANCE ESTIMATION OF A PWM-DRIVEN SOLENOID

  • Jung, H.G.;Hwang, J.Y.;Yoon, P.J.;Kim, J.H.
    • International Journal of Automotive Technology
    • /
    • 제8권2호
    • /
    • pp.249-258
    • /
    • 2007
  • This paper proposes a method that can be used for the resistance estimation of a PWM (Pulse Width Modulation)-driven solenoid. By using estimated solenoid resistance, the PWM duty ratio was compensated to be proportional to the solenoid current. The proposed method was developed for use with EHB (Electro-Hydraulic Braking) systems, which are essential features of the regenerative braking system of many electric vehicles. Because the HU (Hydraulic Unit) of most EHB systems performs not only ABS/TCS/ESP (Electronic Stability Program) functions but also service braking function, the possible duration of continuous solenoid driving is so long that the generated heat can drastically change the level of solenoid resistance. The current model of the PWM-driven solenoid is further developed in this paper; from this a new resistance equation is derived. This resistance equation is solved by using an iterative method known as the FPT (fixed point theorem). Furthermore, by taking the average of the resistance estimates, it was possible to successfully eliminate the effect of measurement noise factors. Simulation results showed that the proposed method contained a sufficient pass-band in the frequency response. Experimental results also showed that adaptive solenoid driving which incorporates resistance estimations is able to maintain a linear relationship between the PWM duty ratio and the solenoid current in spite of a wide variety of ambient temperatures and continuous driving.

노면 경사부하를 고려한 승용차용 토크컨버터 클러치 시스템의 퍼지 슬립 제어 (Fuzzy Logic Slip Control of Torque Converter Clutch System for Passenger Car Considering Road Grade Resistance)

  • 한진오;신병관;조한상;이교일
    • 대한기계학회논문집A
    • /
    • 제24권3호
    • /
    • pp.718-727
    • /
    • 2000
  • Nowadays, most passenger cars equipped with automatic transmissions use torque converter clutches to reduce fuel consumption, and recently the slip control scheme of torque converter clutches is widely studied for the expansion of the operating region of torque converter clutches and thus for the further improvement of the fuel economy of vehicles. In this study, the analysis of the torque converter clutch system including the line pressure control unit of the automatic transmission and the actuating hydraulic control unit of the torque converter clutch is performed, and a feedforward controller and a fuzzy logic controller for its slip control are proposed. Also, for the slip controller to use the grade resistance information during control, an observer-based grade resistance estimator is designed. The performance of the designed grade resistance estimator and the slip controller is verified by dynamic simulations, and the effect of the torque converter clutch slip control on the fuel economy is examined using a driving cycle simulation.

IC 센서를 이용한 고속철도차량 구동장치의 무선 온도 모니터링 시스템 (Wireless Temperature Monitoring of Driving Gear Unit in High Speed Train Using IC Sensor)

  • 권석진;서정원;이동형;황지성
    • 한국정밀공학회지
    • /
    • 제30권7호
    • /
    • pp.673-678
    • /
    • 2013
  • Driving gear units can be affected by various problems, including those associated with external or internal defects in the bearing, problems with the lubricant oil, high-loading of the railway, and frequent impacts generated by rail joints. Temperature monitoring is a basic method in diagnosing abnormal conditions in the reduction gear and other components. This paper describes a new wireless monitoring system for the temperature diagnosis of abnormal conditions of the reduction gear. Integrated circuit (IC)-type temperature sensors were installed in the reduction gear box of a high-speed railway car. The temperature data from the reduction gear were acquired and analyzed in situ during high-speed rail operation. Analysis of these data was used to alert the driver and/or maintenance personnel when problems occurred.

농작업자 자동 추종 운반차 개발(I) - 시작기 제작 및 실내성능시험 - (Development of an Autonomous Worker-Following Transport Vehicle (I) - Manufacture and indoor experiment of the prototype vehicle -)

  • 권기영;정성림;강창호;손재룡;한길수;정석현;장익주
    • Journal of Biosystems Engineering
    • /
    • 제27권5호
    • /
    • pp.409-416
    • /
    • 2002
  • This study was conducted to develop a vehicle, leading or following a worker at a certain distance to assist laborious transporting works in greenhouses. A prototype vehicle, which consisted of the rear driving, the front steering and the console units, was designed and tested in the ideal indoor conditions. Results of this study were summarized as following: 1. The driving unit was designed to travel at the speed ranges of 0.3∼0.8 m/sec depending on the operating modes with a maximum payload of 100 kg. 2. The console unit consisted of a main-board including a 80C196KC microprocessor and peripheral devices, a power-board and safety interlock. Worker-leading, and following modes were available in automatic and manual modes. 3. Steering was achieved by turning the steering motor against the sensed direction. Proper steering angles for correcting travel direction were determined as 5 and 9 degrees when sensing cultivation beds and plants, respectively.

저상굴절버스 조향시스템 전자제어장치의 테스트플랫폼 구축에 관한 연구 (A Study on a Test Platform for AWS (All-Wheel-Steering) ECU (Electronic Control Unit) of the Bi-modal Tram)

  • 이수호;문경호;박태원;김기정;최성훈;김영모
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.1051-1059
    • /
    • 2008
  • In the development process of an ECU (Electrical Control Unit), numerous tests are necessary to evaluate the performance and control algorithm. The vehicle based test is expensive and requires long time. Also, it is difficult to guarantee the safety of the test driver. To overcome the various problems faced in the development process, the ECU test has been done using HIL (Hardware In the Loop). The HIL environment has the actual hardware including an ECU and a virtual vehicle model. In this paper, the test platform environment is devloped for the AWS ECU black box test. The test platform is built on HIL (Hardware In the Loop) architecture. Using the developed test platform, the control algorithm of the AWS ECU can be evaluated under the virtual driving condition of the bi-modal tram. Driving conditions, such as a front steering angle and vehicle velocity, are defined through the PC (Personal Computer) input. Input signals are transformed to electrical signals in the PC. These signals become the input conditions of the AWS ECU. The AWS ECU is stimulated by arbitory input conditons, and responses of the system are observed.

  • PDF

자동차 환경에서 스마트 모바일 블랙박스 DVR (Smart Mobile Blackbox DVR in Car Environment)

  • 최선오;김영포;임용순;김영자;강은영
    • 한국인터넷방송통신학회논문지
    • /
    • 제13권5호
    • /
    • pp.9-15
    • /
    • 2013
  • 본 논문에서는 사고 자동인식 서비스 제공과 위험 운전 여부 등을 통하여 운전자의 운전습관을 교정해 주고 사고 전후의 동영상을 재현하는 확장성이 높은 모바일 블랙박스 DVR (SMBD, Smart Mobile Blackbox DVR) 컴퓨터의 모델링 설계를 하였다. SMBD는 임베디드 시스템에 무선 기능을 탑재하여 차량이 휴면상태에서도 사고발생 지점과 영상정보를 무선통신을 이용하여 24시간 관제센터에 통보함으로써 긴급구난 서비스 및 교통정보를 제공 받을 수 있다. 또한 차량 ECU(Electronic Control Unit)의 차량정보 및 센서 데이터와 연동하여 무선 eCall (Emergency Call) 서비스를 실현할 수 있다.

유압 구동식 이족 로봇의 구동을 위한 탑재식 유압 파워 유닛의 에너지 효율적 제어 (Energy Efficient Control of Onboard Hydraulic Power Unit for Hydraulic Bipedal Robots)

  • 조부연;김성우;신승훈;김민수;오준호;박해원
    • 로봇학회논문지
    • /
    • 제16권2호
    • /
    • pp.86-93
    • /
    • 2021
  • This paper proposes a controller to regulate the supply pressure of the hydraulic power unit (HPU) for driving a bipedal robot. We establish flow rate models for charging accumulator, actuating joints and leaking from actuators and spool valves. This determines the pump driving motor speed to satisfy the demanded flow rate for operating the bipedal robot without the energy loss caused by the bypass through a pressure regulating valve. We apply proposed controller to an onboard HPU mounted on top of bipedal robot platform with twelve degrees of freedom. We implement air-walking motion and squat motion which require variable flow rate to the bipedal robot. Through this experiment, the energy efficiency of proposed controller was verified by comparing the electric energy consumed when the controller was applied and when the pump operated at constant speed. We also shows the capability of the HPU's control performance to regulate supply pressure.

요부 안정화를 위한 복대형 입는 로봇 개발 (Development of Brace-type Wearable Robot for Lumbar Stabilization)

  • 김주완;심재훈;김기원;정선근;박재흥
    • 로봇학회논문지
    • /
    • 제18권2호
    • /
    • pp.189-196
    • /
    • 2023
  • An abdominal brace is a recommended treatment for patients with lumbar spinal disorders. However, due to the nature of the static brace, it uniformly compresses the lumbar region, which can weaken the lumbar muscles or create a psychological dependence that worsens the condition of the spine when worn for an extended period of time. Due to these issues, doctors limit the wearing time when prescribing it to patients. In this paper, we propose a device that can dynamically provide abdominal pressure and support according to the lumbar motion. The proposed device is a wearable robot in the form of a brace, with actuators and a driving unit mounted on the brace. To enhance wearability and reduce the weight of the device, worm gears actuator and a multi-pulley mechanism were adopted. Based on the spinal motion of the wearer measured by the Inertia measurement unit sensors, the drives wire by driving pulley, which provide tension to the multi-pulley mechanism on both sides, dynamically tightening or loosening the device. Finally, the device can dynamically provide abdominal pressure and support. We describe the hardware and system configuration of the device and demonstrate its potential through basic control experiments.

회전 운동이 이젝터 성능에 미치는 영향에 관한 연구 (Study on the Swirling Motion Effect of Ejector Performance)

  • 강상훈;박영철
    • 한국산학기술학회논문지
    • /
    • 제18권4호
    • /
    • pp.544-549
    • /
    • 2017
  • 본 논문은 오존 방식 선박평형수 처리의 핵심 장치인 이젝터에 대하여 회전 운동하는 구동 유체가 기체-액체 이젝터의 효율에 미치는 영향에 관한 연구이다. 이젝터는 오존을 구동 노즐을 통해 분사되는 고압 액체(선박평형수)와 주변부의 저압 기체 간의 운동량 교환으로 발생되는 부압에 의해 기체(오존)를 흡입시키는 장치이다. 기존의 이젝터는 단순한 형태로 구동 유체가 분사되지만, 본 논문에서는 구동 노즐부에 회전 유도장치를 적용하여 구동 유체가 회전 운동하며 분사될 수 있도록 한다. 구동 유체의 회전 운동 유무에 따른 유동 특성을 파악하기 위하여 전산유체해석을 이용하였으며, 구동 유체의 압력과 유량, 흡입부에 발생하는 흡입 유체의 부압과 흡입 유량, 그리고 토출 압력이 예측되었다. 그 결과를 바탕으로 회전유도 장치가 적용된 이젝터의 효율은 22.25%로 산출되었으며, 구동 유체의 회전 운동이 없는 이젝터에 비해 약 1.7%의 효율이 향상되었다. 마지막으로 전산유체해석의 타당성을 검증하고자 실험 장치를 구축하여 회전 유도 장치가 적용된 이젝터에 대한 실험을 수행하였으며, 전산유체해석 결과와 비슷한 결과를 얻을 수 있었다.