• Title/Summary/Keyword: driving range

Search Result 728, Processing Time 0.03 seconds

Pre-processing of load data of agricultural tractors during major field operations

  • Ryu, Myong-Jin;Kabir, Md. Shaha Nur;Choo, Youn-Kug;Chung, Sun-Ok;Kim, Yong-Joo;Ha, Jong-Kyou;Lee, Kyeong-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • Development of highly efficient and energy-saving tractors has been one of the issues in agricultural machinery. For design of such tractors, measurement and analysis of load on major power transmission parts of the tractors are the most important pre-requisite tasks. Objective of this study was to perform pre-processing procedures before effective analysis of load data of agricultural tractors (30, 75, and 82 kW) during major field operations such as plow tillage, rotary tillage, baling, bale wrapping, and to select the suitable pre-processing method for the analysis. A load measurement systems, equipped in the tractors, were consisted of strain-gauge, encoder, hydraulic pressure, and radar speed sensors to measure torque and rotational speed levels of transmission input shaft, PTO shaft, and driving axle shafts, pressure of the hydraulic inlet line, and travel speed, respectively. The entire sensor data were collected at a 200-Hz rate. Plow tillage, rotary tillage, baling, wrapping, and loader operations were selected as major field operations of agricultural tractors. Same or different farm works and driving levels were set differently for each of the load measuring experiment. Before load data analysis, pre-processing procedures such as outlier removal, low-pass filtering, and data division were performed. Data beyond the scope of the measuring range of the sensors and the operating range of the power transmission parts were removed. Considering engine and PTO rotational speeds, frequency components greater than 90, 60, and 60 Hz cut off frequencies were low-pass filtered for plow tillage, rotary tillage, and baler operations, respectively. Measured load data were divided into five parts: driving, working, implement up, implement down, and turning. Results of the study would provide useful information for load characteristics of tractors on major field operations.

Searching Methods of Corresponding Points Robust to Rotational Error for LRF-based Scan-matching (LRF 기반의 스캔매칭을 위한 회전오차에 강인한 대응점 탐색 기법)

  • Jang, Eunseok;Cho, Hyunhak;Kim, Eun Kyeong;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.6
    • /
    • pp.505-510
    • /
    • 2016
  • This paper presents a searching method of corresponding points robust to rotational error for scan-matching used for SLAM(Simultaneous Localization and Mapping) in mobile robot. A differential driving mechanism is one of the most popular type for mobile robot. For driving curved path, this type controls the velocities of each two wheels independently. This case increases a wheel slip of the mobile robot more than the case of straight path driving. And this is the reason of a drifting problem. To handle this problem and improves the performance of scan-matching, this paper proposes a searching method of corresponding points using extraction of a closest point based on rotational radius of the mobile robot. To verify the proposed method, the experiment was conducted using LRF(Laser Range Finder). Then the proposed method is compared with an existing method, which is an existing method based on euclidian closest point. The result of our study reflects that the proposed method can improve the performance of searching corresponding points.

Work load analysis for determination of the reduction gear ratio for a 78 kW all wheel drive electric tractor design

  • Kim, Wan-Soo;Baek, Seung-Yun;Kim, Taek-Jin;Kim, Yeon-Soo;Park, Seong-Un;Choi, Chang-Hyun;Hong, Soon-Jung;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.3
    • /
    • pp.613-627
    • /
    • 2019
  • The purpose of this study was to design a powertrain for a 78 kW AWD (all wheel drive) electric tractor by analyzing the combination of various reduction gear ratios on a commercial motor using data from actual agricultural work and driving conditions. A load measurement system was constructed to collect data using wheel torque meters, proximity sensors, and a data acquisition system. Field experiments for measuring load data were performed for two environmental driving conditions (on asphalt and soil) and four agricultural operations (plow tillage, rotary tillage, loader operation, and baler operation). The attached implements and gear stages were selected through farmer surveys. The range of the reduction ratio was determined by selecting the minimum reduction ratio needed to satisfy the torque condition required for agricultural operations and the maximum reduction gear ratio to satisfy the maximum travel speed. The minimum reduction gear ratio selected was 57 in consideration of the working load condition and the maximum reduction gear ratio selected was 62 considering the maximum running speed. In the range of the reduction gear ratio 57 - 62, the selected motor satisfied all working torque conditions. As a result, the combination of the selected motor and reduction gear ratio was applicable for satisfying the loads required during agricultural operation and driving operation.

A Study on Rotor Shape Design to Reduce Torque Ripple and Core Loss of IPMSM for SEV (SEV용 IPMSM의 토크리플 및 철손 저감을 위한 회전자 형상 설계에 관한 연구)

  • Jeong-In Kang;Tae-Uk Jung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.2_2
    • /
    • pp.327-332
    • /
    • 2023
  • As interest in eco-friendly and fuel-efficient electric vehicles has increased globally, there has also been a growing interest in the efficiency, vibration, and noise of motors for electric vehicles Electric vehicles generally have significantly lower driving ranges per charge compared to the maximum driving range per fueling of internal combustion engine vehicles. Additionally, there are issues with various vibrations and noise generated by the motor that can cause discomfort for passengers. Therefore, research is necessary to reduce losses, vibration, and noise of the motor to improve the driving range of electric vehicles. IPMSM with a purchased design can obtain additional reluctance torque by utilizing the difference in inductance between the d and q axes. However, due to this reluctance torque, torque ripple occurs larger than other motors. The increase in torque ripple also increases noise and vibration. Since the reluctance torque, which is the main cause of torque ripple, is determined by the shape of the motor components, torque ripple can be reduced through shape optimization. In this paper, a rotor shape for reducing torque ripple and core loss that causes vibration, noise, and efficiency to decrease of IPMSM for electric vehicles was proposed. Optimization design was carried out by changing the shape of the q-axis path of the rotor to reduce the difference in inductance of the d and q-axis of the rotor. Finally, in order to verify the validity of the design variables derived through the optimal design, the original model and the improved model were compared through the FEM. Compared to the original model, the improved model's torque verifying ripple was reduced by about 62% and core loss was reduced by about 29%, the superiority of the improved model.

Characterization of Coarse, Fine, and Ultrafine Particles Generated from the Interaction between the Tire and the Road Pavement (차량 주행 시 타이어와 도로의 경계면에서 발생하는 조대입자, 미세입자 및 초미세입자의 특성 연구)

  • Kwak, Jihyun;Lee, Sunyoup;Lee, Seokhwan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.5
    • /
    • pp.656-667
    • /
    • 2013
  • The non-exhaust coarse, fine, and ultrafine particles were characterized by on-road driving measurements using a mobile sampling system. The on-road driving measurements under constant speed driving revealed that mass concentrations of roadway particles (RWPs) were distributed mainly in a size range of 2~3 ${\mu}m$ and slightly increased with increasing vehicle speed. Under braking conditions, the mode diameters of the particles were generally similar with those obtained under constant speed conditions. However, the PM concentrations emitted during braking condition were significantly higher than those produced under normal driving conditions. Higher number concentrations of ultrafine particles smaller than 70 nm were observed during braking conditions, and the number concentration of particles sampled 90 mm above the pavement was 6 times higher than that obtained 40 mm above the pavement. Under cornering conditions, the number concentrations of RWPs sampled 40 mm above the pavement surface were higher than those sampled 90 mm above the pavement. This might be explained that a nucleation burst of a lot of vapor evaporated from the interaction between the tire and the road pavement under braking conditions continuously occurred by cooling during the transport to the sampling height 90 mm, while, for the case of cornering situations, the ultrafine particle formation was completed before the transport to the sampling height of 40 mm.

A Study on The Relationship Between Driver Expectancy and Variable Speed Limit Under the Adverse Weather Conditions By Using A Driving Simulator (악천후 시 운전자 기대심리와 가변 제한속도간 관계정립을 위한 가상주행 시뮬레이터 연구)

  • Kim, Yongseok;Lee, Sukki;Kim, Soullam
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.6
    • /
    • pp.138-149
    • /
    • 2016
  • The study reviewed the effects of the variable speed limit under adverse weather conditions by using a driving simulator. The study assumed that the display of the reduced speed limit without any change of the weather condition and the display of the same speed limit under the change of the weather conditions violate the expectancy of drivers, so it brings the negative effects on the safety. The study regards drivers conformance as the index of the degree of the compliance of driver expectancy, and utilizes the cumulative probability density within the certain range of the speed including displayed speed limit as the quantitative measure of effectiveness. The study reviewed this assumptions by using a driving simulator. As the results, the cases assumed to violate the expectancy of drivers showed the negative effects on the driving behaviour of driver relatively.

Development of a Driver-Oriented Engine Control Unit (ECU)-Mapping System With BigData Analysis (빅데이터 분석을 통한 운전자 맞춤형 엔진 제어 장치 시스템의 개발)

  • Kim, Shik;Kim, Junghwan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.4
    • /
    • pp.247-258
    • /
    • 2017
  • Since 2016 when the regulations related to vehicle structure and device modification were drastically revised, the car tuning market has been growing rapidly. Particularly, many drivers are showing interest in changing the interior and exterior according to their preference, or improving the specifications of their cars by changing the engine and powertrain, among others. Also, as the initial engine settings such as horse power and torque of the vehicle are made for stable driving of the vehicle, it is possible to change the engine performance, via Engine Control Unit (ECU) mapping, to the driver's preference. However, traditionally, ECU mapping could be only performed by professional car engineers and the settings were also decided by them. Therefore, this study proposed a system that collects data related to the driver's driving habits for a certain period and sends them to a cloud server in order to analyze them and recommend ECU mapping values. The traditional mapping method only aimed to improve the car's performance and, therefore, if the changes were not compatible with the driver's driving habits, could cause problems such as incomplete combustion or low fuel efficiency. However, the proposed system allows drivers to set legally permitted ECU mapping based on analysis of their driving habits, and, therefore, different drivers can set it differently according to the vehicle specifications and driving habits. As a result, the system can optimize the car performance by improving output, fuel efficiency, etc. within the range that is legally permitted.

Reliability Verification of Secured V2X Communication for Cooperative Automated Driving (자율협력주행을 위한 V2X 보안통신의 신뢰성 검증)

  • Jung, Han-gyun;Lim, Ki-taeg;Shin, Dae-kyo;Yoon, Sang-hun;Jin, Seong-keun;Jang, Soo-hyun;Kwak, Jae-min
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.391-399
    • /
    • 2018
  • V2X communication is a technology in which a vehicle exchanges information with various entities such as other vehicles, infrastructure, networks, pedestrians, etc. through a wired or wireless network. Recently, V2X communication technology has been steadily developed and recently it has played an important role in autonomous cooperation driving technology combined with autonomous vehicle technology. Autonomous vehicles can utilize the external information received via V2X communication to extend the recognition range of existing sensors and to support more safe and natural autonomous driving. In order to operate these autonomous cooperative vehicles on public roads, the security and reliability of autonomous V2X communication should be verified in advance. In this paper, we present test scenarios and test procedures of secure V2X communication for cooperative automated driving and present verification results.

A Study on Evaluation of the Key Functional Factors of Safe Driving in Elderly

  • Park, So-Yeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.11
    • /
    • pp.191-199
    • /
    • 2021
  • This study aims to present the need to supplement the driver's license renewal test for elderly drivers. In Korea, the proportion of elderly drivers is increasing as the elderly population increases rapidly. Overall the traffic accident rate is decreasing but the traffic accident and death rate from traffic accidents are increasing in older drivers. In this study the assessments and education conducted when renewing the driver's license for elderly drivers conducted in Korea were conducted to find out the necessary tests compared to the current situation of foreign countries. Although it is appropriate to evaluate the three key functional areas of vision, cognition, motor and somatosensory, we currently evaluate visual acurity in vison area. While MMSE-K and Clock drawing tests are not recognizable for mild cognitive impairment in cognitive areas. The motor and somato sensory function to perform driving are not evaluated at all. Therefore for safe driving of older drivers, the test to be conducted during renewal of the driver's license will need to supplement that the visual field and contrast sensitivity in vision area, cognitive function from mild cognitive impairments, and the endurance, functional range of motion and proprioception in motor function area.

EMI Noise Source Reduction of Single-Ended Isolated Converters Using Secondary Resonance Technique

  • Chen, Zhangyong;Chen, Yong;Chen, Qiang;Jiang, Wei;Zhong, Rongqiang
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.403-412
    • /
    • 2019
  • Aiming at the problems of large dv/dt and di/dt in traditional single-ended converters and high electromagnetic interference (EMI) noise levels, a single-ended isolated converter using the secondary resonance technique is proposed in this paper. In the proposed converter, the voltage stress of the main power switch can be reduced and the voltage across the output diode is clamped to the output voltage when compared to the conventional flyback converter. In addition, the peak current stress through the main power switch can be decreased and zero current switching (ZCS) of the output diode can be achieved through the resonance technique. Moreover, the EMI noise coupling path and an equivalent model of the proposed converter topology are presented through the operational principle of the proposed converter. Analysis results indicate that the common mode (CM) EMI noise and the differential mode (DM) EMI noise of such a converter are deduced since the frequency spectra of the equivalent controlled voltage sources and controlled current source are decreased when compared with the traditional flyback converter. Furthermore, appropriate parameter selection of the resonant circuit network can increase the equivalent impedance in the EMI coupling path in the low frequency range, which further reduces the common mode interference. Finally, a simulation model and a 60W experimental prototype of the proposed converter are built and tested. Experimental results verify the theoretical analysis.