• Title/Summary/Keyword: driving rain

Search Result 38, Processing Time 0.033 seconds

Determination of Driving Rain Index by Using Hourly Weather Data for Developing a Good Design of Wooden Buildings

  • Ra, Jong Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.627-636
    • /
    • 2018
  • This research was performed to supplement the previous research about the driving rain index (DRI) for Korea determined by using daily weather data for 30 years. The average annual driving rain index (AADRI) was calculated from the hourly weather data, and the magnitude of DRI was investigated according to wind directions. The hourly climate data were obtained from the Korea Meteorological Administration (KMA) for the period 2009 to 2017. Of 82 locations investigated, seven were classified into regions where the level of exposure of walls to rain was high. The result showed quite a difference from the previous results, in which no high exposure regions were observed. Since the hourly-based and the daily-based annual driving rain index (ADRI) values showed only a slight difference, the result may be explained by the length of the periods used in both studies. The change of DRI according to wind directions showed that there was a certain range of wind directions in which driving rain easily approached building walls. It suggests that the consideration of wind directions with high DRI would be useful to develop a good design of wooden buildings from the point of wood preservation and maintenance.

Determination of Driving Rain Index in Korea (국내 유도강우지수의 결정)

  • Ra, Jong-Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.36-42
    • /
    • 2017
  • This research was performed to evaluate the level of exposure of buildings to rain in Korea. The impingement of driving rain by wind is evaluated by driving rain index (DRI). Average annual driving rain indexes (AADRI) for 64 stations spread all over Korea have been determined by using the data of wind speed and precipitation obtained from Korea Meteorological Adminstration (KMA). Based on the values, the regions has been classified as low, moderate, and high. No high exposure regions were found in Korea; 22 regions with moderate exposure and 42 regions with low exposure. Although the values are very dependent on climate change, most of Korea except several regions such as Daegwallyeong, Busan, Yeosu, and Jeju island may be evaluated to be the region where exposure of buildings to driving rain is low to moderate.

Spatial and temporal distribution of driving rain on a low-rise building

  • Blocken, Bert;Carmeliet, Jan
    • Wind and Structures
    • /
    • v.5 no.5
    • /
    • pp.441-462
    • /
    • 2002
  • This paper presents a practical numerical method to determine both the spatial and temporal distribution of driving rain on buildings. It is based on an existing numerical simulation technique and uses the building geometry and climatic data at the building site as input. The method is applied to determine the 3D spatial and temporal distribution of wind-driven rain on the facade a low-rise building of complex geometry. Distinct wetting patterns are found. The important causes giving rise to these particular patterns are identified : (1) sweeping of raindrops towards vertical building edges, (2) sweeping of raindrops towards top edges, (3) shelter effect by various roof overhang configurations. The comparison of the numerical results with full-scale measurements in both space and time for a number of on site recorded rain events shows the numerical method to yield accurate results.

Intelligent Rain Sensing and Fuzzy Wiper Control Algorithm for Vision-based Smart Windshield Wiper System

  • Lee, Kyung-Chang;Kim, Man-Ho;Lee, Suk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1694-1699
    • /
    • 2003
  • A windshield wiper system plays a key part in assuring the driver's safety during the rainfall. However, because the quantity of rain and snow vary irregularly according to time and the velocity of the automobile, a driver changes wiper speed and interval from time to time to secure enough visual field in the traditional windshield wiper system. Because a manual operation of windshield wiper distracts driver's sensitivity and causes inadvertent driving, this is becoming a direct cause of traffic accidents. Therefore, this paper presents the basic architecture of a vision-based smart windshield wiper system and a rain sensing algorithm that regulates speed and interval of the windshield wiper automatically according to the quantity of rain or snow. This paper also introduces a fuzzy wiper control algorithm based on human's expertise, and evaluates the performance of the suggested algorithm in an experimental simulator.

  • PDF

Development of Intelligent Rain Sensing Algorithm for Vision-based Smart Wiper System (비전 기반 스마트 와이퍼 시스템을 위한 지능형 레인 센싱 알고리즘 개발)

  • Lee, Kyung-Chang;Kim, Man-Ho;Lee, Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.7
    • /
    • pp.649-657
    • /
    • 2004
  • A windshield wiper system plays a key part in assurance of driver's safety at rainfall. However, because quantity of rain and snow vary irregularly according to time and velocity of automotive, a driver changes speed and operation period of a wiper from time to time in order to secure enough visual field in the traditional windshield wiper system. Because a manual operation of wiper distracts driver's sensitivity and causes inadvertent driving, this is becoming direct cause of traffic accident. Therefore, this paper presents the basic architecture of vision-based smart wiper system and the rain sensing algorithm that regulate speed and interval of wiper automatically according to quantity of rain or snow. Also, this paper introduces the fuzzy wiper control algorithm based on human's expertise, and evaluates performance of suggested algorithm in the simulator model. Especially the vision sensor can measure wider area relatively than the optical rain sensor, hence, this grasps rainfall state more exactly in case disturbance occurs.

Intelligent Rain Sensing Algorithm for Vision-based Smart Wiper System (비전 기반 스마트 와이퍼 시스템을 위한 지능형 레인 감지 알고리즘 개발)

  • Lee, Kyung-Chang;Kim, Man-Ho;Im, Hong-Jun;Lee, Seok
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1727-1730
    • /
    • 2003
  • A windshield wiper system plays a key part in assurance of driver's safety at rainfall. However, because quantity of rain and snow vary irregularly according to time and velocity of automotive, a driver changes speed and operation period of a wiper from time to time in order to secure enough visual field in the traditional windshield wiper system. Because a manual operation of windshield wiper distracts driver's sensitivity and causes inadvertent driving, this is becoming direct cause of traffic accident. Therefore, this paper presents the basic architecture of vision-based smart windshield wiper system and the rain sensing algorithm that regulate speed and operation period of windshield wiper automatically according to quantity of rain or snow. Also, this paper introduces the fuzzy wiper control algorithm based on human's expertise, and evaluates performance of suggested algorithm in simulator model. In especial, the vision sensor can measure wide area relatively than the optical rain sensor. hence, this grasp rainfall state more exactly in case disturbance occurs.

  • PDF

Research on aerodynamic force and structural response of SLCT under wind-rain two-way coupling environment

  • Ke, Shitang;Yu, Wenlin;Ge, Yaojun
    • Wind and Structures
    • /
    • v.29 no.4
    • /
    • pp.247-270
    • /
    • 2019
  • Wind-resistant design of existing cooling tower structures overlooks the impacts of rainfall. However, rainstorm will influence aerodynamic force on the tower surface directly. Under this circumstance, the structural response of the super-large cooling tower (SLCT) will become more complicated, and then the stability and safety of SLCT will receive significant impact. In this paper, surrounding wind fields of the world highest (210 m) cooling tower in Northwest China underthree typical wind velocities were simulated based on the wind-rain two-way coupling algorithm. Next, wind-rain coupling synchronous iteration calculations were conducted under 9 different wind speed-rainfall intensity combinations by adding the discrete phase model (DPM). On this basis, the influencing laws of different wind speed-rainfall intensity combinations on wind-driving rain, adhesive force of rain drops and rain pressure coefficients were discussed. The acting mechanisms of speed line, turbulence energy strength as well as running speed and trajectory of rain drops on structural surface in the wind-rain coupling field were disclosed. Moreover, the fitting formula of wind-rain coupling equivalent pressure coefficient of the cooling tower was proposed. A systematic contrast analysis on its 3D distribution pattern was carried out. Finally, coupling model of SLCT under different working conditions was constructed by combining the finite element method. Structural response, buckling stability and local stability of SLCT under different wind velocities and wind speed-rainfall intensity combinations were compared and analyzed. Major research conclusions can provide references to determine loads of similar SLCT accurately under extremely complicated working conditions.

A Study on the Analysis of Safe Driving Behavior on Curve Section by Curve Radius and Road Surface Condition (곡선반경과 노면상태에 따른 곡선구간 안전주행 행태분석)

  • Kim, Keun-Hyuk;Lim, Joon-Bum;Lee, Soo-Beom;Kim, Joo-Hee;Kim, Sun-Mi
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.211-218
    • /
    • 2012
  • Two experiment are planed to identify driver's safe driving behaviour by curve radius, road surface condition in curve section. At four-lane and two-lane road, conducted experiments are check on driver's feeling of safety that 30 subjects do not feel discomfort. And using the data from these experiments, this study compare physical speed (not slipping, fall our of the road) with safety driving speed(drivers felt a comfortable and safe speed) each curve radius and fiver road surface condition(drying, wet, rain, snow and ice). As a result, safe driving behaviour factors that are derived to curve radius of 100m units, five road surface conditions enable to represent quantitative analysis of driver's discomfort. This study will develop road design method and evaluation reflected ergonomic aspects.

A Study on the Collapse Reason by Slope Stability Analysis Considering Construction Stages (시공단계를 고려한 비탈면의 안정성 검토를 통한 비탈면 활동원인 연구)

  • Byun, Yoseph;Jang, Hyeonkil;Jung, Kyoungsik;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.8
    • /
    • pp.25-31
    • /
    • 2011
  • In recent rainy seasons, severe rain storms have caused frequent reinforced retaining wall collapses and slope sliding which have lead to casualties. In this paper, investigating cases of reinforced retaining wall failure, the causes of cracks in reinforced retaining wall and slope sliding have been examined, and a finite element analysis considering the construction phase has been done to analyze the cause and characteristics of slope sliding. As a result, reinforced retaining wall displacement has increased due to heavy rain storms and the increase size has been shown to be large. From these results, it has been analyzed that pile driving can have an effect on the collapse of reinforced retaining walls.

Analysis on Handicaps of Automated Vehicle and Their Causes using IPA and FGI (IPA 및 FGI 분석을 통한 자율주행차량 핸디캡과 발생원인 분석)

  • Jeon, Hyeonmyeong;Kim, Jisoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.3
    • /
    • pp.34-46
    • /
    • 2021
  • In order to accelerate the commercialization of self-driving cars, it is necessary to accurately identify the causes of deteriorating the driving safety of the current self-driving cars and try to improve them. This study conducted a questionnaire survey of experts studying autonomous driving in Korea to identify the causes of problems in the driving safety of autonomous vehicles and the level of autonomous driving technology in Korea. As a result of the survey, the construction section, heavy rain/heavy snow conditions, fine dust conditions, and the presence of potholes were less satisfied with the current technology level than their importance, and thus priority research and development was required. Among them, the failure of road/road facilities and the performance of the sensor itself in the construction section and the porthole, and the performance of the sensor and the absence of an algorithm were the most responsible for the situation connected to the weather. In order to realize safe autonomous driving as soon as possible, it is necessary to continuously identify and resolve the causes that hinder the driving safety of autonomous vehicles.