• Title/Summary/Keyword: driving motor

Search Result 1,449, Processing Time 0.047 seconds

A Method of Controlling the Driving and Electric Braking Force of the Electric Motor (전동기의 구동 및 전기 제동력 제어 방법)

  • Kwag, Yeon-geun
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.4
    • /
    • pp.280-284
    • /
    • 2020
  • To improve maintenance, environmental issues, efficiency, and economics to supplement the current air braking problems, braking power related to the entire driving range of electric brakes was presented in all areas from stop to high speed. As a result, the efficiency of braking power and cutting-edge technology have expanded energy use, and through this paper, noise in all driving ranges can be reduced, and maintenance costs can be reduced. The traction motor must bring the variable speed of the traction motor and the terminal voltage of the traction motor to drive high-speed driving characteristics that control the maximum voltage of the inverter. Therefore, we studied driving and brake changes through simulation.

Modeling of BLDC Motor Driving System for Platform Screen Door Control applied Fuel Cell Power Generation System (연료전지 발전시스템을 이용한 승강장 스크린 도어 제어용 BLDC 전동기 구동 모델링)

  • Yoon, Yong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.6
    • /
    • pp.968-974
    • /
    • 2017
  • In this paper, modeling of brushless DC motor (BLDC) driving system for platform screen door control applied fuel cell power generation system has been proposed. At first the system configuration and operational principle of the developed fuel cell simulator has been investigated and the design of BLDC motor driving system is studied and the overall performance and dynamics of the proposed system could be effectively examined by simulation. PSIM simulation program is implemented to verify the performance and compatibility of the fuel cell power generation system and BLDC motor control system modeling.

Development of a Driving Operation System for Vehicle Simulator (차량 시물레이터의 운전석 시스템 개발)

  • 유성의;박민규;유기성;이민철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.291-291
    • /
    • 2000
  • A vehicle driving simulator is a virtual reality device which a human being feels as if the one drives a vehicle actually. Driving Operation System acts as an interface between a driver and a driving simulator. This paper suggests the driving operation system for a driving simulator. This system consists of a controller, DC geared motor, MR brake, rotary encoders, steeping motor and bevel gear box. Reaction force and torque on the steering system were made by DC_Motor and MR_Brake. Reaction force and torque on the steering system were compare between real car and a driving simulator. The controller based on the 80C196KC micro processor that manage and transfer signal.

  • PDF

Developed a BLDC Motor for Driving a Commercial Vehicle Fan (상용차 팬 구동용 BLDC 모터 개발)

  • Shin, Dong-Hwa;Lee, Byung-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.533-540
    • /
    • 2022
  • This paper is the research result of designing and developing a BLDC motor for driving a condenser fan, which is widely used in air conditioners of commercial vehicles and specially equipped vehicles, and produced with a target value. The design of the motor was carried out in the order of designing the electric and magnetic circuits after determining the motor specifications. The process was repeated with different set values until the designed target condition was satisfied, and the electric and magnetic field distributions were made to be equal by reflecting the characteristics of the material. As a structural feature of the motor, it is a rotating field type composed of multipoles, and has a structure in which a permanent magnet is attached to the surface of the rotor. The manufactured BLDC motor is a 3-phase square wave driving method, with a rated voltage of 24 [V], a rotational speed of 2,500 [rpm], a rated current of 10 [A], and a power consumption of 180 [W]. A microcontroller for driving and controlling the motor was also manufactured.

Subcortical Ischemic Change as a Predictor of Driving Cessation in the Elderly

  • Jang, Mi;Hong, Chang Hyung;Kim, Hyun-Chung;Choi, Seong Hye;Seo, Sang Won;Kim, Seong Yoon;Na, Duk L.;Lee, Yunhwan;Chang, Ki Jung;Roh, Hyun Woong;Son, Sang Joon
    • Psychiatry investigation
    • /
    • v.15 no.12
    • /
    • pp.1162-1167
    • /
    • 2018
  • Objective Motor, perceptual, and cognitive functions are known to affect driving competence. Subcortical ischemic changes on brain magnetic resonance imaging (MRI) can reflect reduction in cognitive and motor performance. However, few studies have reported the relationship between subcortical ischemic changes and driving competence of the elderly. Thus, the objective of this study was to investigate the association between subcortical ischemic changes on MRI and driving abilities of the elderly. Methods Participants (n=540) were drawn from a nationwide, multicenter, hospital-based, longitudinal cohort. Each participant underwent MRI scan and interview for driving capacity categorized into 'now driving' and 'driving cessation (driven before, not driving now)'. Participants were divided into three groups (mild, n=389; moderate, n=116; and severe, n=35) depending on the degree of white matter hyperintensity (WMH) on MRI at baseline. Driving status was evaluated at follow-up. Statistical analyses were conducted using ${\chi}^2$ test, analysis of variance (ANOVA), structured equation model (SEM), and generalized estimating equation (GEE). Results In SEM, greater baseline degree of WMH was directly associated with driving cessation regardless of cognitive or motor dysfunction (${\beta}=-0.110$, p<0.001). In GEE models after controlling for age, sex, education, cognitive, and motor dysfunction, more severe change in the degree of WMH was associated with faster change from 'now driving' state to 'driving cessation' state over time in the elderly (${\beta}=-0.508$, p<0.001). Conclusion In both cross-sectional and longitudinal results, the degree of subcortical ischemic change on MRI might predict driving cessation in the elderly.

Driving Performance Analysis of a Rear In-wheel Motor Vehicle with Simultaneous Control of Driving Torque and Semi-active Suspension System (후륜 인휠 모터 전기자동차의 구동 및 반능동 현가시스템 동시 제어를 통한 주행 성능 분석)

  • Shin, Sulgi;Choi, Gyoojae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.11-17
    • /
    • 2015
  • Recently, the in-wheel motor vehicle is rapidly developed to solve energy exhaustion and environmental problems. Especially, it has the advantage of independently driving the torque control of each wheel in the vehicle. However, due to the weight increase of wheel, the comfort of vehicle riding and performance of road holding become worse. In this paper, to compensate the poor performance, a simultaneous control of the driving torque and semi-active suspension system is investigated. A vehicle model is generated using CarSim Software and validated by field tests. Co-simulation of CarSim and MATLAB/Simulink with control logics is carried out, and it is found that simultaneous control of the driving torque and semi-active suspension system can improve driving stability and durability of the in-wheel motor system.

Determination Method of Centerpost Distance of Interior Permanent Magnet Synchronous Motor for Electric Vehicle Traction Motor considering Mechanical Safety

  • Kim, Sung-Jin;Kim, Yong-Jae;Jung, Sang-Yong;Suzuki, Kenji
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.51-56
    • /
    • 2013
  • With the active development of hybrid electric vehicle (HEV), the application of interior permanent magnet synchronous motor (IPMSM) has been expanded. As wide driving region of IPMSM for electric vehicle (EV) traction motor is required, many studies are conducted to improve characteristics of a motor in both low and high-speed driving regions. A motor in high-speed driving region generates (produces) large stress to the rotor. Thus, the rotor needs to be designed considering the mechanical safety. Therefore, in this paper, we conducted stress analysis and electromagnetic analysis to determine the centerpost's distance which is considered important during the design of IPMSM for EV traction motor in order to secure mechanical safety and satisfy specifications of output requirement.

Analysis and Fabrication of the Mode Conversion Type Ultrasonic Motor Using Finite Element Method (유한요소법을 이용한 모드변환형 초음파 모터의 해석 및 제작)

  • Lee, Jae-Hyung;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.23-26
    • /
    • 2003
  • An ultrasonic motor is a motor which uses vibration -a type of elastic vibration- to obtain a driving force, which then drives the motor using friction. In this paper, mode conversion type - single resonance mode ultrasonic rotary motor that use langevin type ultrasonic vibrator was studied. This model was proposed for the first time by Japanese Kumada in 1985. In this study, finite element analysis (FEA) of a stator and bidirectional driving characteristic of a rotor was newly obtained. The amplitude and phase of displacement and elliptical trajectory of beam was confirmed by FEA The fabricated motor was operated to clockwise and counterclockwise in 40.8 [kHz] and 44.2 [kHz] respectively. But bidirectional driving characteristics did not coincide each other.

  • PDF

Implementation of In-wheel Motor Driving System for Electric Vehicle (In-wheel 모터를 이용한 전기자동차 구동시스템의 구현)

  • Yun, Si-Young;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.750-755
    • /
    • 2013
  • In-wheel motor system gets the driving force from direct-driven motor in the wheel of electric vehicle. It is known as good system for vehicles, from an efficiency, packaging, handling and safety. This paper describes motor and inverter technologies, system configuration and control algorithms for in-wheel type electric vehicle. It is necessary to control on an interrelation perspective because this system drives two motors at same time. In system design, IPMSM(Interior Permanent Magnet Synchronous Motor) including a wide operating range and high-speed rpm is used and flux weakening control is performed in constant power range. Under the torque command from the host controller, auto control box, inverter's output torque is calculated with using torque estimation technique and applied to actual vehicle driving system. It is verified that the configuration and the algorithm are suitable for the in-wheel motor system.

A Study on the Driving Circuit of Piezoelectric Ultrasonic Motor Using PLL Technique (PLL을 이용한 압전 초음파 모터의 구동회로에 관한 연구)

  • ;;Sergey Borodin
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.1
    • /
    • pp.33-38
    • /
    • 2003
  • This paper describes control principles of the piezoelectric ultrasonic motor which is operated by the ultrasonic vibration generated by the piezoelectric element. The piezoelectric ultrasonic motor has excellent characteristics such as compact size, noiseless motion, low speed, high torque and controllability, and has been recently applied for the practical utilization in industrial, consumer, medical and automotive fields. In this paper, the design of two-phase push-pull inverter for driving the piezoelectric ultrasonic motor is described, and a new control method of automatic resonant frequency tracking using PLL(Phase-Locked Loop) technique is mainly presented. the experimental results by this inverter system for driving the piezoelectric ultrasonic motor are illustrated herein. The inverter system with PLL technique improved the speed stability of the piezoelectric ultrasonic motor.