• 제목/요약/키워드: drive engine

검색결과 285건 처리시간 0.031초

농작업 부하 데이터를 활용한 80 kW급 전기구동 AWD 트랙터의 시뮬레이션 모델 개발 (Development of a Simulation Model for an 80 kW-class Electric All-Wheel-Drive (AWD) Tractor using Agricultural Workload)

  • 백승윤;김완수;김연수;김용주;박철규;안수철;문희창;김봉상
    • 드라이브 ㆍ 컨트롤
    • /
    • 제17권1호
    • /
    • pp.27-36
    • /
    • 2020
  • The aim of this study is to design a simulation model for an electric All-Wheel-Drive (AWD) tractor to evaluate the performance of the selected component and agricultural work ability. The electric AWD tractor consists of four motors independently for each drive wheel, and each motor is combined with an engine generator, a battery pack, and reducers. The torque data of a 78 kW-class tractor was measured during plow tillage and driving operation to develop a workload cycle. A simulation model was developed by using commercial software, Simulation X, and it used the workload as the simulation condition. As a result of simulation analysis, the drive system, including an electric motor and reducers, was able to cope with high load during plow tillage. The SOC (State of Charge) level was influenced by the output power of the motor, and it was maintained in the range of 50~80%. The fuel consumed by the engine was about 18.23 L during working on a total of 8 fields. The electric AWD tractor was able to perform agricultural work for about 7 hours. In the future study, the electric AWD tractor will be developed reflecting the simulation condition. Research on the comparison between the simulation model and the electric AWD tractor should be performed.

후륜 구동 자동차의 슬립 인 튜브 프로펠러 샤프트의 진동특성에 관한 연구 (A Study on the Vibration Characteristic of Slip-In Tube Propeller Shaft in FR Automobile)

  • 이혜진;황재혁;김승수;변정무;김응주;차달준;강상욱;변원용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.309-313
    • /
    • 2006
  • Many researchers have studied on the lightness of automobile. These researches are such as a body shell, sub frame, fuel tank, engine etc. The transmission Part is a magnitude one in the aspect of weight. A drive shaft (propeller shaft) transmits the engine power to rear differential gear assembly. It is used in the compact car that is a single drive shaft. But in the case of long body cars such as SUV (Sports Utility Vehicle), truck and large vehicle, two or three divided drive shaft are used to prevent the vibration damage from a drive shaft that has been taken high torsion and rotation. This multi-divided drive shaft structure is so heavy because it is assembled by yoke, center bearing and solid spline axis. When the rear axle move up and down, the spline shaft adjust the variation of a length between the transmission and rear axle gearbox. In this paper, it is studied in the experimental method that is a bending vibration characteristic of slip in tube shaped propeller shaft. This type propeller shaft is developed to combine the spline axis with drive shaft and can be light in weight of transmission part.

  • PDF

MEASUREMENT OF FIELD PERFORMANCE FOR TRACTOR

  • M. J. NahmGung;Park, C. H.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.III
    • /
    • pp.819-826
    • /
    • 2000
  • This study was performed to develop a measurement system of tractor field performance for plow and rotary operations. Measurement system for tractor consisted of torque sensors to measure torque of drive axles and PTO axle, speed sensors to measure rotational speed of drive axles and engine, microcomputer to control data logger, and data logger as I/O interface system. The measurement system was installed on four-wheel-drive tractor. Four-element full-bridge type strain gages were used for torque measurement of drive axles and optical encoders were used to measure speeds of drive axles and engine. Slip rings were mounted on the rotational axles. Signals from sensors were inputted to data logger that was controlled by microcomputer with parallel communication. Sensors were calibrated before the field tests. Regression equations were found on completion of the calibrations. The field experiment was performed at paddy fields and uplands. Rotary and plow were used when the tractor was operated in the field. Travelling speeds of the tractor were 1.9 km/h, 2.7 km/h, 3.7 km/h, 5.5 km/h, 8.2 km/h, and 11.8 km/h. Operating depths of implements were maintained approximately 20cm during the tests. Torque data of drive axles were different at each location during plow and rotary operations. Results showed that torque of rear axles were greater than those of front axles. Total torque were 6860 - 11064 Nm at the upland and 7360 - 14190 Nm at the paddy field for plow operations. It was found that torque at the paddy field were about 20% greater than those at the upland for plow operations. Torque data showed that rotary operations required less power than plow operation at the paddy field and the upland. Torque measurements at each axle for rotary operations were only 8 - 16% of plow operations in the upland and 15 - 20% in the paddy field.

  • PDF

동력전달계 동력손실계 CVT 응답지연을 고려한 엔진-CVT 통합제어 알고리즘 (Engine-CVT Integrated Control Algorithm Considering Power train Loss and CVT Response Lag)

  • 김달철;김현수
    • 한국자동차공학회논문집
    • /
    • 제9권1호
    • /
    • pp.112-121
    • /
    • 2001
  • In this paper, an engine-CVT integrated control algorithm is suggested by considering the powertrain loss, inertia torque and the CVT ratio response lag. The integrated control algorithm consists of (1) the optimal engine power calculation and (2) determining of the optimal throttle valve opening and the optimal CVT ratio. The optimal engine power is obtained by compensating the inertia torque due to the CVT ratio change and the powertrain loss that is calculated iteration procedure. In addition, an algorithm to compensate the effect of the CVT ratio response lag on the drive torque is suggested by the engine speed compensation causing the increased optimal CVT ratio. Simulation results show that the engine-CVT integrated control algorithm developed in this study makes it possible to obtain better engine operation on the optimal operating line, which results in the improved fuel economy while satisfying the driver's demand.

  • PDF

Gas Heat Pump 구동을 위한 가스 엔진 제어기의 개발 (A Study on the development of Gas Engine Controller for Gas Heat Pump)

  • 이중현;고국원;고경철;김종형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.618-621
    • /
    • 2004
  • Compressors in Large Multi-room air conditioning system are often driven by gas heat pumps. The advantages of GHP are their high level of heating performance and low cost because they use the LNG fuel to drive engine. We developed engine control system. The developed system controls engine speed based on proportional, integral and derivative (PID) method. This controller is designed to eliminate the need for continuous operator attention on engine revolution control. The control system includes 4 spark coil drivers, fuel drivers and relay drivers to make engine's operating more stable. The experiments of control engine revolution of this system are based on the various load conditions.

  • PDF

직구동 전기기계식 구동기의 강성요구규격에 기반한 설계용 해석모델 (Analysis Model for Design Based on Stiffness Requirement of Direct Drive Electromechanical Actuator)

  • 오상관;이희중;박현종;오동호
    • 한국항공우주학회지
    • /
    • 제47권10호
    • /
    • pp.738-746
    • /
    • 2019
  • 한국형발사체 3단에 사용되는 7톤 짐벌엔진의 추력벡터제어에는 전기유압식 구동장치시스템 대신 중량, 비용 및 시험평가 등의 측면에서 더 효율적인 전기기계식 구동장치시스템을 사용한다. 전기기계식 구동기는 위치제어 서보 구동기로 고진공에서도 운용 가능한 BLDC 모터를 사용한다. 짐벌엔진을 갖는 발사체의 경우 구동기 자체 진동모드와 구동기를 지지하는 기체구조체의 벤딩모드, 짐벌엔진의 관성부하 등이 조합되어 합성공진 현상이 발생할 수 있다. 합성공진이 발생할 경우 발사체 자세제어는 불안정해진다. 이러한 관계로 짐벌엔진 및 기체구조체 지지부, 구동장치시스템의 고유 특성을 고려하여 강성에 대한 요구규격이 적용되어 왔다. 한국형발사체 3단 7톤 짐벌엔진의 경우 구동장치시스템의 강성요구규격은 $3.94{\times}10^7N/m$ 수준이며 이를 만족시키기 위한 직구동 방식전기기계식 구동기를 설계하였다. 본 논문에서는 강성요구규격을 기반으로 설계된 직구동 전기기계식 구동기의 등가강성 해석모델을 제안하고, 이를 실험결과로 검증하였다.

가상화 환경에서 NVMe SSD 성능 분석 및 직접 접근 엔진 개발 (Performance Analysis of NVMe SSDs and Design of Direct Access Engine on Virtualized Environment)

  • 김세욱;최종무
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제24권3호
    • /
    • pp.129-137
    • /
    • 2018
  • 낸드 플래시 메모리 기반의 NVMe(Non-Volatile Memory express) SSD(Solid State Drive)는 멀티 I/O 큐 환경을 제공하는 PCIe 인터페이스 기반에 NVMe 프로토콜을 사용하는 저장장치이다. NVMe SSD는 Multi-core 시스템에서 병렬 I/O 처리가 가능하고 SATA SSD에 비해 대역폭이 크며 대용량의 저장 공간을 제공하기 때문에 데이터 센터, 클라우드 컴퓨팅 등에 사용될 차세대 저장장치로 주목받고 있다. 하지만 가상화 시스템에서는 소프트웨어 I/O 스택의 병목으로 인하여 NVMe SSD의 성능을 충분히 활용하지 못하고 있다. 특히, Xen과 KVM과 같이 호스트 시스템의 I/O 스택을 사용하는 경우에는, 호스트 시스템과 가상머신의 중복된 I/O 스택을 통해서 입출력이 처리되기 때문에 성능 저하가 크게 발생한다. 본 논문에서는 NVMe SSD에 직접 접근하는 기술을 KVM 가상화 시스템에 적용함으로써 가상 머신 I/O의 성능을 향상시키는 Direct-AIO (Direct-Asynchronous I/O)엔진을 제안한다. 그리고 QEMU 에뮬레이터에 제안한 엔진을 개발하고 기존의 I/O 엔진과의 성능 차이를 비교 및 분석한다.

플라우 및 로터리 작업 시 농업용 관리기의 엔진 부하율 분석 (Analysis of Engine Load Factor for Agricultural Cultivator during Plow and Rotary Tillage Operation)

  • 이시언;김택진;김용주;임류갑;김완수
    • 드라이브 ㆍ 컨트롤
    • /
    • 제20권2호
    • /
    • pp.31-39
    • /
    • 2023
  • The aim of this study was to measure and analyze engine load factor (LF) according to working conditions (operation type and gear stage) of small agricultural multi-purpose cultivator to estimate the emission of air pollutants. To calculate LF, a torque sensor capable of collecting torque and rotational speed was installed on the engine output shaft and DAQ was used to collect data. A field test was conducted with major operation of a cultivator and tillage operations (plow tillage and rotary tillage). Engine power was calculated using engine torque and rotational speed and LF was calculated using real-time power and rated power. In addition, unified LF was calculated using the weight for each operation and the average LF for each operation. As a result, average LF values at 1.87 and 3.10 km/h by plow tillage were 0.50 and 0.69, respectively. Average LF values at 1.87 and 3.10 km/h by rotary tillage were 0.70 and 0.78, respectively. Furthermore, unified LF calculated in consideration of the weight factor showed a value of 0.65, which was 135% higher than the conventional LF (0.48). Results of this study could be used as basic information for realizing LF values in the field of agricultural machinery.

HSDI 디젤 엔진 연비 저감 개발에 대한 연구 (Study of HSDI Diesel Engine Development for Low Fuel Consumption)

  • 전제록;유준;윤금중
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.138-143
    • /
    • 2006
  • Modification of injector, oil ring tension reduction and oil pump rotor re-matching with optimization of relevant engine control parameters could drive fuel consumption reduction of HSDI diesel engine. A 5 holes injector was replaced with a 6 holes with smaller nozzle hole diameter and 1.5 k factor, and evaluated in a view of fuel economy and emission trade-offs. With introducing smaller nozzle hole diameter injector, PM(Particulate Matter) was drastically decreased for low engine load and low engine rpm. Modification of oil pump and oil ring was to reduce mechanical friction and be proved to better fuel economy. Optimization of engine operating conditions was a great help for the low fuel consumption. Influence of the engine operating parameters· including pilot quantity, pilot interval, air mass and main injection timing on fuel economy, smoke and NOx has been evaluated with 14 points extracted from NEDC(New European Driving Cycle) cycle. The fuel consumption was proved to $7\%$ improvement on an engine bench and $3.7\%$ with a vehicle.

차량 모델을 이용한 구동력 제어 시스템 (TCS)의 제어 방법 개발 (Development of a Control Method of Traction Control System Using Vehicle Model)

  • 송정훈;김흥섭;이대희;손민혁
    • 대한기계학회논문집A
    • /
    • 제28권8호
    • /
    • pp.1203-1211
    • /
    • 2004
  • A traction control systems (TCSs) composed of either a wheel slip controller or a throttle valve controller or an integrated controller of both systems are proposed in this study. To validatethe dynamic characteristics of a vehicle and TCS, a full car model that can simulate the responses of both front wheel drive (2WD) and four wheel drive (4WD) vehicle is also developed. The wheel slip controller uses a sliding mode control scheme and the throttle valve is controlled by a PID controller. The results shows that tHe brake TCS and the engine TCS achieve rapid acceleration, and reduce slip angle on slippery road. When a vehicle is cornering and accelerating maneuver with the brake or engine TCS, understeer or oversteer occur, depending on the driving conditions. The integrated TCS prevents most of these problems and improves the stability and controllability of the vehicle.