• Title/Summary/Keyword: drinking groundwater

Search Result 236, Processing Time 0.141 seconds

Groundwater Contamination by Cation, Anion and Pesticides (지하수중 음이온, 양이온, 및 금속의 함량)

  • 김형석;정세영;최중명
    • Journal of environmental and Sanitary engineering
    • /
    • v.7 no.2
    • /
    • pp.111-128
    • /
    • 1992
  • According to the increase of population and industrialization, the quality of our drinking water are becoming worse by the contamination of resources, production of THM and other halogenated hydrocarbons during the purifying process, the problem of corroded water supplying pipeline, and the water reservoir tanks, Many people choose groundwater to drink instead of city tap water, but sometimes we get report about groundwater contamination by wastes, swage, septic tank, etc. It is reported that in U. S. over 20% of population are drinking groundwater, but U. S EPA reported the groundwater contamination by pesticides, herbicides, fungicides, fertilizer, and various chemical substances. Craun, et at announced the groundwater contamination by bacteria which are related with poor installation of septic tank. Johnson and Kross mentioned aboutmethemoglobinemia by NO3-N originated from human and animal feces, organic chemicals, and fertilizer, and as the results the infant mortality could be risen. Some scientist also reported the high concentration of metals in groundwaters and some cation and anions, and volatile organic compou nds. Authors investigated 80 groundwaters in urban, agricultural, and industrial area during last 3 month(June - August) to check any drinking water quality parameters are exceeding the standards. The results were as follow. 1, The average value of ammonia nitrate were within the standard, but 11.76% of urban area were exceeded the 10 rpm standard, in agricultural area 42.3175 were exceeded, and in industrial area 20.2% were exceeded the drinking water standard of 10 ppm. the highest concentration was 29.37 ppd in industrial area. 2. The mean value of metals is not exceeded the standard, but there were some groundwater whose Mn value was 0.424 ppm(standard is 0,3 ppm) in urban area, 0.737 rpm in agricultural area, and 5.188 ppm in industrial area. The highest Zn value was 1.221 ppm (standard is 1.0 ppm)was found in industrial area. 3. The percentage of contamination by general bacteria was 8.82% in urban area, 15.38% in agricultural area, and 15.00% in industrial area. Escherichia coil group was also contaminated by 35.29% in urban area, 30.76% in agricultural area, and 30.00% in industrial area. 4, The pH value was within the standard which means there was no influence by acid or alkali chemicals, nor acid rain Through the above results, all the groundwater should be tested to check the safety for drinking water and should make some alternative methods suitable for drink.

  • PDF

Fluorine Distribution and Attenuation of Groundwater within Limestone and Granite from Keumsan-Wanju Fluorite Mineralized Zone (금산-완주지역 형석광화대내 석회암 및 화강암지역 지하수의 불소분포 특성 및 저감방안)

  • Hwang, Jeong
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.105-117
    • /
    • 2001
  • The characteristics of hydrogeochemistry and fluorine distribution in drinking groundwater from limestone and granite were studied in the Keumsan-Wanju area, where major important fluorite-deposits are distributed. The hydrochemical properties of groundwater from studied area arc commonly characterized as $Ca-HC0_3$ water type. However, some of the groundwater samples collected from Jurassic and Cretaceuus granites belong to $Ca-Na-HC0_3 and Na-HC0_3$ type, respectively. The contamination of drinking groundwater by minewater from the nearby fluorite deposits is not found yet. However, groundwater having high F contents up to 1].4 mgll, which is higher than the drinking water limit, is found from the wells located in Cretaceous granite. The tluorine contents in groundwater generally increase with increasing well depth. The concentrations of F in the groundwater show a positive relationship with the values of Na, $HC0_3, Cl. Si0_2$, pH, whereas a negative relationship with Ca. The positive correlation of F-concentrations to major elements ($Si0_2$, Na, CI) and trace elements (Li, B, Rb) may suggest that the groundwater come from the decomposition of tluoride-bearing silicate minerals within highly differentiated granitic rocks, Therefore, wells for drinking water should not be developed or should be drilled within shallow level in the Cretaceous granite region to reduce the F contents in the groundwater.

  • PDF

Uranium in Drinking Water of Kyungpook Area in Korea (경북지역의 먹는 물에서 우라늄 검출 특성)

  • Lee, Hea-Geun;Cha, Sang-Deok;Kim, JeongJin;Kim, Young-Hun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.235-242
    • /
    • 2014
  • Uranium can be released into the water environment from natural sources and human activities. The natural source of uranium is dominant in the Korean soil and groundwater environments. Uranium has both of radioactive and chemical toxic properties. Therefore, a drinking water contaminated with uranium has a high health risk. This study was conducted to determine the uranium concentration of water systems including small village drinking water system, groundwater for drinking water purpose, spring water, groundwater monitoring well, and emergency water suppling system. The uranium concentration was compared with domestic and other countries' standard. The contamination level was also evaluated on the basis of geological characteristics of the area. Among total 803 samples, 6 exceeded the Korean standard, $30{\mu}g/{\ell}$ and this was about 0.7% of the total sample. On the basis of geology, uranium concentration appeared to be increased in order of biotite granodiorite > biotite granite > gneissoid granite. The highest level of uranium was 12.4 in average.

Performance of membrane filtration in the removal of iron and manganese from Malaysia's groundwater

  • Kasim, Norherdawati;Mohammad, Abdul Wahab;Abdullah, Siti Rozaimah Sheikh
    • Membrane and Water Treatment
    • /
    • v.7 no.4
    • /
    • pp.277-296
    • /
    • 2016
  • The aim of this research was to investigate the ability of nanofiltration (NF) and ultrafiltration (UF) membranes as a filtration unit for groundwater treatment for drinking water resources. Commercial membranes denoted as TS40, TFC-SR3 and GHSP were used to study the performance based on rejections and fluxes. The investigation has been conducted using natural groundwater obtained from a deep tube well with initial concentration of iron (Fe) and manganese (Mn) at 7.15 mg/L and 0.87 mg/L, respectively. Experimental results showed that NF membranes exhibited higher fluxes than UF membrane with pure water permeability at 4.68, 3.99 and $3.15L.m^{-2}.h^{-1}.bar^{-1}$, respectively. For metal rejection, these membranes have performed higher removal on Fe with TS40, TFC-SR3 and GHSP membranes having more than 82%, 92% and 86% respectively. Whereas, removal on Mn only achieved up to 60%, 80% and 30%, for TS40, TFC-SR3 and GHSP membranes respectively. In order to achieve drinking water standard, the membranes were efficient in removing Fe ion at 1 and 2 bar in contrast with Mn ion at 4 and 5 bar. Higher rejection of Fe and Mn were achieved when pH of feed solution was increased to more than 7 as TFC-SR3 membrane was negatively charged in basic solution. This effect could be attributed to the electrostatic effect interaction between membrane material and rejected ions. In conclusion, this study proved that NF membrane especially the TFC-SR3 membrane successfully treated local groundwater sources for public drinking water supply in line with the WHO standard.

Pesticide Analysis in Drinking Water by SPE Method (SPE법에 의한 음료수중 농약성분)

  • 김형석
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.2
    • /
    • pp.59-66
    • /
    • 1995
  • According to the population increase and industrialization, the drinking water source, Han River and other sources, are contaminated by industrial wastewater, domestic sewage, and agricultural discharges. Among the contaminants, and toxic substances, pesticides is most interesting items (or human health Our drinking water has some problems of THMs, Fe, odor, etc., $o many people use groundwater or bottled water. But sometimes there are many reports about groundwater contamination owing to the agricultural chemicals, waste disposal, industrial wastewater. In America, there are about 45,000 groundwave supply company and in korea about 20% of total population are using groundwave as drinking water source. In America, studies about SEE is increasing Instead of liquid- liquid extraction method, because of many advantages of SEE methods. Author tried to investigate SPE methods in the spiked water samples to compare with liquid- liquid extraction method and got the following results. The amount of organic solvents which are used In SPE method is less than 1/10 compared with liquid- liquid method, the analytical duration time is shortened, and the ethyl acetate was good fluent among several organic solvents.

  • PDF

Heavy metals and VOCs contamination of urban Broundwaters in Seoul, Korea

  • Park, Seong-Sook;Yun, Seong-Taek;Park, Byoung-Young;Yu, Soon-Young
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.291-295
    • /
    • 2002
  • We measured the concentrations of heavy metals and VOCs in groundwaters (N=38) in Seoul. The comparison of our data with U.S. Environmental Protection Agency's Maximum Contaminant Levels for Drinking Water and with the Korean Drinking Water Standards shows that most of the metals except for Fe and Mn do not exceed the levels. However, the concentrations of most heavy metals (esp., Zn, Cu, Cr, Ni) tend to increase in residential and industrialized areas. The examination of the metal speciation using Anodic Stripping Voltammetry (ASV) and TOC analyzer Indicates that large amounts of Zn occur as labile metal fraction, whereas Cu occurs as non- labile forms at many sites, possibly due to its tendency to be adsorbed onto inorganic colloidal particles to form electroinactive species in groundwater. The most frequently existed VOCs in Seoul groundwaters are trichloroethylene and tetrachloroethylene, especially in agricultural, industrial, and high traffic areas.

  • PDF

농촌지역 간이상수도 수질에 대한 수리지화학적 특성: 충남 금산군 일대

  • 이진수;고경석;김용재
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.369-372
    • /
    • 2004
  • This study presents the hydrogeochmical investigation to know the effect of geology and sources for water quality in small potable water supply system at rural area. The results of water quality in Geumsan area showed the 3.2% of water samples exceeded the limit of drinking water standard by bacteria. The hydrochemical investigation results indicated the high EC, Ca and HCO$_3$ in surface water and metasedimentary rocks and this is caused by the dissolution of calc-slicate minerals of metasedimentary rocks.

  • PDF

Establishment of Non-Drinking Groundwater Quality Standards: (1) Specific Harmful Substances (비음용 지하수 오염물질 기준설정체계 구축 연구: (1) 특정유해물질)

  • An, Youn-Joo;Nam, Sun-Hwa;Lee, Woo-Mi;Yoon, Sung-Ji;Yoon, Jin-Yul;Jeong, Seung-Woo;Kim, Hye-Jin;Kim, Huyn-Koo;Kim, Tae-Seung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.9
    • /
    • pp.630-635
    • /
    • 2013
  • There is a need to establish systematic procedure of groundwater quality standards, however, there were no specified basis for establishing substances and values in Korean groundwater quality standards for non-drinking water. In this study, we reviewed basis for deriving groundwater quality standard in the developed countries, considering carcinogenic and non-carciongenic risk via inhalation and dermal contact exposure pathways. Also, we reviewed the prior systematic procedure of standards related to water quality (e.g. drinking water, surface water, and wastewater). USEPA RAGS, ASTM RBCA, and Massachusettes presented the formulas for deriving groundwater concentrations of chemicals and there were similarity and differences. We suggests systematic procedure of groundwater quality standards, as follows. (1) Selection of groundwater pollutants population, (2) Possibility of risk assessment, (3) Selection of monitoring priority substances, (4) Monitoring, (5) Risk assessment, (6) Selection of groundwater quality standard candidates, (7) Selection of new substances and values for groundwater quality standards. Especially, groundwater concentration of hazardous material were presented according to revised risk formulas via inhalation and dermal contact.

Geochemical evolution of mine tailing porewaters and groundwater pollution - Case for Shiheung mine (광미 자연풍화에 따른 광미공극수의 지구화학적 진화와 지하수 오염영향 - 시흥광산의 사례)

  • 정예진;이상훈
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.19-21
    • /
    • 2001
  • The Shiheung mine was closed in 1972 and has been abandoned since then. Although some restoration work has been done, there still remain mine failings in and around the mine, posing a potential environmental hazard. Mine tailings and the porewater extracted from the tailing were investigated to see any evidence of elemental release and migration to adjacent groundwater and soil in the field. The pHs of the tailing range from 6.24 to 7.23. Calcite in the studied area seems to influence on such neutral pH range. Depth profile of mine tailing demonstrate elements have been leached and removed as a consequence of weathering during disposal. This is also supported by the findings from porewater analysis, corresponding the trends in the mine tailings. The concentrations of Cu, Cd, Pb, Zn in the tailing porewater exceed the standard value of EPA for drinking water and this implies groundwater can be contaminated through infiltration of the porewaters, which ultimately will be discharged as leachate from the mine tailing. Groundwater samples collected near the mine area do not show high metal concentrations, except for Fe, which were detected over drinking water standard.

  • PDF

Countermeasure to Prevent Seawater Intrusion on Coastal Area (해안지역 지하수댐 염수침입 방지기술 개선 방안)

  • 부성안;이기철;김진성;정교철;고양수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.148-154
    • /
    • 2002
  • Groundwater Dam is one of the reliable techniques to get huge amount of groundwater abstraction for municipal, agricultural, drinking, industrial water supply system. It can be a major technique to solve water shortage problems when it based on the sufficient watershed, proper topology, and adequate aquifer distribution and pollution control. It is suggested that the two consecutive underground wall in the coastal area to prevent seawater intrusion beneath a single wall.

  • PDF