• 제목/요약/키워드: drilling of composite

검색결과 87건 처리시간 0.023초

Experimental and numerical FEM of woven GFRP composites during drilling

  • Abd-Elwahed, Mohamed S.;Khashaba, Usama A.;Ahmed, Khaled I.;Eltaher, Mohamed A.;Najjar, Ismael;Melaibari, Ammar;Abdraboh, Azza M.
    • Structural Engineering and Mechanics
    • /
    • 제80권5호
    • /
    • pp.503-522
    • /
    • 2021
  • This paper investigates experimentally and numerically the influence of drilling process on the mechanical and thermomechanical behaviors of woven glass fiber reinforced polymer (GFRP) composite plate. Through the experimental analysis, a CNC machine with cemented carbide drill (point angles 𝜙=118° and 6 mm diameter) was used to drill a woven GFRP laminated squared plate with a length of 36.6 mm and different thicknesses. A produced temperature during drilling "heat affected zone (HAZ)" was measured by two different procedures using thermal IR camera and thermocouples. A thrust force and cutting torque were measured by a Kistler 9272 dynamometer. The delamination factors were evaluated by the image processing technique. Finite element model (FEM) has been developed by using LS-Dyna to simulate the drilling processing and validate the thrust force and torque with those obtained by experimental technique. It is found that, the present finite element model has the capability to predict the force and torque efficiently at various drilling conditions. Numerical parametric analysis is presented to illustrate the influences of the speeding up, coefficient of friction, element type, and mass scaling effects on the calculated thrust force, torque and calculation's cost. It is found that, the cutting time can be adjusted by drilling parameters (feed, speed, and specimen thickness) to control the induced temperature and thus, the force, torque and delamination factor in drilling GFRP composites. The delamination of woven GFRP is accompanied with edge chipping, spalling, and uncut fibers.

다이어몬드 입자드릴에 의한 탄소섬유 에폭시 복합재료의 드딜링 특성에 관한 연구

  • 김형철;김기수;함승덕;남궁석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.115-121
    • /
    • 1993
  • The carbon fiber epoxy composite materials have some problems, for example, seperation between carbon fiber and epoxy, delamination of lamina etc. Also, the tool wear is very serious. Therefore, we need to improve the shape of drill and condtion of drilling if possible. In this study, machinability of the carbon fiber epoxy composite materials in drilling was experimentlly investigated to establish the efficient shape of drill.

  • PDF

유리섬유 강화 폴리에스터의 드릴가공 특성 (Drilling Characteristics of Glass Fiber Reinforced Polyester)

  • 김성일
    • 한국생산제조학회지
    • /
    • 제9권3호
    • /
    • pp.90-95
    • /
    • 2000
  • Today fiber composite materials are routinely used in such wide applications as ships automobiles aircraft space vehi-cles containers sporting goods and appliances. The current knowledge of machining glass fiber reinforced polyester com-posites unfortunately is inadequate for its optimum utilization in many applications. Therefore This paper deals with drilling characteristic of glass fiber reinforced polyester composites. In the drilling of glass fiber reinforced polyester the quality of the cut surfaces is strongly dependent on the drilling parameters. drilling tests were carried out on glass fiber reinforced polyester using standard HSS tools. The material containing random chopped strand fibers and woven roving was fabricated by hand lay-up The entrance and exit surface of the holes was examined. The cutting force was also mea-sured to analyze the drilling characteristics,.

  • PDF

[0/90 0 ]s CFRP 복합재의 드릴작업손상과정 모니터링에 대한 AE의 적용 (The Application of AE for a Drilling Damage Process Monitoring in [0/90 0 ]s CFRP Composites)

  • 윤유성;권오헌
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1491-1498
    • /
    • 2000
  • In recent years, CFRP composite materials have been increasingly used in various fields of engineering because of a high specific strength and stiffness properties. Drilling is one of the most impo rtant cutting processes that are generally carried out on CFRP materials owing to the need for the structural integration. However, delamination are often occurred as one of the drilling damages. Therefore, there are needs studying for the relationships between CFRP drilling and delamination in order to avoid low strength of the structures and inaccuracies of the integration. In this study, AE signals and thrust forces were used for the evaluations of the delamination from a drilling process in [0/900]s CFRP materials. And the drilling damage processes were observed and measured by a real time monitoring technique with a video camera. From the results, we found that the relationships between the delamination from drilling and AE characteristics and drill thrust forces for [0/900]s CFRP composites. Also, we proposed the monitoring method for a visual analysis of drilling damages.

적층구성이 다른 복합재의 드릴 가공에 관한 연구 (A Study on the Drilling of Composites laminates with respect to Stacking sequences)

  • 정성택;박종남;조규재;심재기
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.180-185
    • /
    • 2002
  • In recent days the more use of CFRP composite is in the airplane, automobile, and sport goods, etc., the more necessity of research on it in this engineering. In this research, the CFRP composite specimen are fabricated by 48 CFRP plies with 6 stacking sequences, and the specimens are drilled with 4 tools. The results are analyzed with consideration of cutting force, type of tools and fabrication condition. The specimens with each drilling conditions are also investigated with SEM. The optimal drilling conditions such as drill types and cutting force with respect to the fabricating condition are studied.

  • PDF

드릴재질에 따른 복합재료의 가공에 관한 연구 (A Study on the drilling CFRP composites laminates with respect to drill materials)

  • 정성택;박종남;김선진;김정호;조규재
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.300-303
    • /
    • 2002
  • In recent days the more use of CFRP composite is in the airplane, and sport goods, etc., the mote necessity of research on it in this engineering. In this research, the CFRP composite specimen are fabricated by 48 CFRP plies with 6 orientation angles. and the specimens are drilled with 4tools The results are analyzed with consideration of cutting force, type of tools and fabrication condition. The specimens with each drilling conditions are also investigated with SEM. The optimal drilling conditions such as drill types and cutting force with respect to the fabricating condition are studied.

  • PDF

탄화 티타늄 금속기 복합재의 드릴가공 특성에 대한 경험적 고찰(1) (An Empirical Study on Drilling Characteristics of Titanium Carbide Metal Matrix Composites (1))

  • 이정근
    • 한국분말재료학회지
    • /
    • 제13권6호
    • /
    • pp.445-449
    • /
    • 2006
  • The experimental data from the central composite design runs were utilized for mathematical models far the drilling characteristics containing linear, quadratic and interactive effects of the parameters such as volume fraction of TiC in the composites, drill speed, feed rate and drill diameter. The models were developed via stepwise selection where the insignificant effects were removed using t-test. The models were subjected to optimization of maximizing drill life and satisfying the other constraints.

Determination of slip modulus of cold-formed steel composite members sheathed with plywood structural panels

  • Karki, Dheeraj;Far, Harry;Al-hunity, Suleiman
    • Steel and Composite Structures
    • /
    • 제43권4호
    • /
    • pp.511-522
    • /
    • 2022
  • An experimental investigation to study the behaviour of connections between cold-formed steel (CFS) joist and plywood structural panel is presented in this paper. Material testing on CFS and plywood was carried out to assess their mechanical properties and behaviour. Push-out tests were conducted to determine the slip modulus and failure modes of three different shear connection types. The employed shear connectors in the study were; size 14 (6mm diameter) self-drilling screw, M12 coach screw, and M12 nut and bolt. The effective bending stiffness of composite cold-formed steel and plywood T-beam assembly is calculated based on the slip modulus values computed from push-out tests. The effective bending stiffness was increased by 25.5%, 18% and 30.2% for self-drilling screw, coach screw, nut and bolt, respectively, over the stiffness of cold-formed steel joist alone. This finding suggests the potential to enhance the structural performance of composite cold-formed steel and timber flooring system by mobilisation of composite action present between timber sheathing and CFS joist.

고속 복합재료 공기 주축부를 위한 추력베어링 설계 (Thrust Bearing Design for High-Speed Composite Air Spindles)

  • 방경근;이대길
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.1997-2007
    • /
    • 2002
  • Composite air spindles are appropriate for the high-speed and the high-precision machining as small hole drilling of printed circuit board (PCB) or wafer cutting for manufacturing semiconductors because of the low rotational inertia, the high damping ratio and the high fundamental natural frequency of composite shaft. The axial load and stiffness of composite air spindles fur drilling operation are determined by the thrust ben ring composed of the air supply part mounted on the housing and the rotating part mounted on the rotating shaft. At high-speed rotation, the rotating part of the thrust bearing should be designed considering the stresses induced by centrifugal force as well as the axial stiffness and the natural frequency of the rotating shaft to void the shaft from failure due to the centrifugal force and resonant vibration. In this work, the air supply part of the thrust bearing was designed considering the bending stiffness of the bearing and the applied load. The rotating part of the thrust bearing was designed through finite element analysis considering the cutting forces during manufacturing as well as the static and dynamic characteristics under both the axial and con trifugal forces during high-speed rotation.

초음파 진동에 따른 CFRP의 출구 구멍 버 생성 (The Exit Hole Burr Generation of CFRP with Ultrasonic Vibration)

  • 원성재;이상평;박기문;고태조
    • 한국기계가공학회지
    • /
    • 제16권1호
    • /
    • pp.134-140
    • /
    • 2017
  • CFRP has many industrial applications due to its low weight and high strength properties. CFRP is a composite material composed of carbon fibers embedded in a polymer matrix; it provides excellent resistance to fatigue wear, corrosion, and breakage due to fatigue. It is increasingly demanded in aircraft, automotive, and medical industries due to its superior properties to aluminum alloys, which were once considered the most suitable for specific applications. The basic machining methods of CFRP are drilling and route milling. However, in the case of drilling, the delamination of each layer, uncut fiber, resin burning, spalling, and exit burrs are barriers to successful application. This paper investigates the occurrence of exit burrs when drilling holes with ultrasonic vibration. Depending on design parameters such as the point angle, the characteristics of hole drilling were identified and appropriate machining conditions were considered.