• 제목/요약/키워드: drilling force

검색결과 156건 처리시간 0.02초

초경합금 Gun Drill에 의한 박용 부품 재료의 CNC 심공가공 특성에 관한 연구 (A Study on the Charactdristics of CNC Deep Hole Maching for Marine Part Materials with the Sintered Carbide Gun Drill)

  • 전태옥;심성보
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권2호
    • /
    • pp.64-74
    • /
    • 1994
  • The gundrill is capable of machining for having large length to diameter ratio in single pass. The techniques of gundrill and gun boring began developing in the late 18th century with the need for more accurate bores in rifle, cannon, machinery part and marine part etc. The main feature of the gun drilling provides a stabilizing cutting force resultant necessary for self guidance of the drill head. A study of the accuracy and surface finish of holes produced would reveal quite useful information regarding the process. The thesis deals with the experimental results obtained during gun drilling on marine part materials for different machining conditions.

  • PDF

VIV simulation of riser-conductor systems including nonlinear soil-structure interactions

  • Ye, Maokun;Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • 제9권3호
    • /
    • pp.241-259
    • /
    • 2019
  • This paper presents a fully three-dimensional numerical approach for analyzing deepwater drilling riser-conductor system vortex-induced vibrations (VIV) including nonlinear soil-structure interactions (SSI). The drilling riser-conductor system is modeled as a tensioned beam with linearly distributed tension and is solved by a fully implicit discretization scheme. The fluid field around the riser-conductor system is obtained by Finite-Analytic Navier-Stokes (FANS) code, which numerically solves the unsteady Navier-Stokes equations. The SSI is considered by modeling the lateral soil resistance force according to nonlinear p-y curves. Overset grid method is adopted to mesh the fluid domain. A partitioned fluid-structure interaction (FSI) method is achieved by communication between the fluid solver and riser motion solver. A riser-conductor system VIV simulation without SSI is firstly presented and served as a benchmark case for the subsequent simulations. Two SSI models based on a nonlinear p-y curve are then applied to the VIV simulations. Also, the effects of two key soil properties on the VIV simulations of riser-conductor systems are studied.

심해 시추와 관련된 국내 해양 환경 및 안전 관련법 개선에 대한 입법론적 연구 (A Study on Legislation for the Improvement of the Marine Environment and Safety Act for Deep Sea Drilling)

  • 홍성화;이창희
    • 해양환경안전학회지
    • /
    • 제23권1호
    • /
    • pp.73-82
    • /
    • 2017
  • 이 연구는 국내 대륙붕 주변에서 진행되는 심해 시추의 개요 및 현황에 대하여 시추의 개념 및 종류, 대륙붕 개발의 연혁 및 현황을 중심으로 검토하였고, 시추와 관련된 해양 환경, 안전법상 적용의 범위, 문제점 등에 대하여 법적으로 분석하였다. 그리고 이 연구는 해저광물자원의 체계적인 개발을 위하여 영국의 '해양구조물(안전관리절차)규정' 기초로 별도의 법률 신설 방안 및 해양환경관리법, 해사안전법, 석유광산안전규칙에 대한 개선안을 입법론적으로 제안하였다. 특히 해외 해양플랜트와 관련된 사고 사례를 기초로 국내 인력에 대한 국제인증교육에 준하는 교육훈련 및 평가 제도의 구축의 필요성을 강조하였다.

충격햄머드릴의 타격력 향상을 위한 연구 (A Study on Improving the Impact Force of Impact Hammer Drill)

  • 김재환;정재천;박병규;백복현
    • 소음진동
    • /
    • 제7권4호
    • /
    • pp.669-679
    • /
    • 1997
  • This paper deals with a study of striker type impact hammer drill for improving the drilling performance. The study was performed through a numerical simulation of the impact hammer mechanism and an experimental comparison of the numerical simulation results was followed. Optimization of the impact mechanism was also performed. The numerical model of the impact hammer drill takes into account the striker motion and the effects of the pressure in the cylinder as well as the friction acting on the striker. The equation of motion is solved with the pressure equation in the cylinder including the friction force. The friction is considered as a combination of Coulomb friction and viscous damping friction. At the moment of impact, an ideal impact model that uses restitution coefficient is used to calculate the sudden change of the striker motion. The numerically simulated impact force shows a good agreement with the experimental result and thus, the validity of the numerical model is proven. Based upon the proposed model, an optimization was performed to improve the impact force of the hammer drill. The objective function is to maximize the impact force and the used design variables are striker mass, frequency of piston, bit guide mass, cylindrical diameter and dimensions of the mechanism components. Each design variable and some other conditions that are essential to manitain normal operation of the hammer drill are considered as constraints. The optimized result show a remarkable improvement in impact force and an experimental proof was investigated.

  • PDF

초경합금의 미세방전 드릴링에 관한 연구 (A Study on Micro ED-Drilling of cemented carbide)

  • 김창호;강수호
    • 한국기계가공학회지
    • /
    • 제9권5호
    • /
    • pp.1-6
    • /
    • 2010
  • The wavelet transform is a popular tool for studying intermittent and localized phenomena in signals. In this study the wavelet transform of cutting force signals was conducted for the detection of a tool failure in turning process. We used the Daubechies wavelet analyzing function to detect a sudden change in cutting signal level. A preliminary stepped workpiece which had intentionally a hard condition was cut by the inserted cermet tool and a tool dynamometer obtained cutting force signals. From the results of the wavelet transform, the obtained signals were divided into approximation terms and detailed terms. At tool failure, the approximation signals were suddenly increased and the detailed signals were extremely oscillated just before tool failure.

Motion and Total Force Distribution for a Floating Marine Structure in Finite-Depth Water

  • Jin-S.,Chung
    • 대한조선학회지
    • /
    • 제13권2호
    • /
    • pp.13-43
    • /
    • 1976
  • A potential flow approach is used to develop a method and an associated computer program for floating marine structures of general configuration in wave of all water depths with arbitrary heading. It computes the total force distributions and six degrees-of-freedom motion. The hydrodynamic-force equations and derived become identical under certain assumptions to the equations commonly used by the offshore industry, and the two methods are compared in detail. The computed motions of all six degree agree quite well with model-scale and full-scale experimental data for two typical semisubmersible drilling rigs in finite-depth water. Also the presented motion computations are more accurate than a previous work by the second approach. The present computations use experimentally validated or determined values of frequency-dependent hydrodynamic coefficients with the effects of the free surface and both finite and infinite water depths. The present method generates sufficient computation accuracy to use for practical design applications.

  • PDF

상하동요 감쇠장치 적용을 통한 새로운 다물체동역학 프로그램의 적용성 검토 (Study on the Applicability of a New Multi-body Dynamics Program Through the Application to the Heave Compensation System)

  • 구남국;하솔;노명일
    • 한국전산구조공학회논문집
    • /
    • 제26권4호
    • /
    • pp.247-254
    • /
    • 2013
  • 본 논문에서는 해상 시추작업을 위한 heave compensation system의 시뮬레이션 모델을 개발하였다. 우선 시뮬레이션을 위하여, 다물체계 동역학 커널을 개발하였다. 다물체계 동역학 커널은 입력 받은 heave compensation system 시뮬레이션 모델의 운동학적 정보를 이용하여 recursive Newton-Euler formulation 방법을 기반으로 운동방정식을 자동으로 구성하고, 수치적으로 해를 계산하는 기능을 한다. 그리고 해상 시추선에 작용하는 외력을 계산하기 위하여 유체 정역학적 힘과 유체 동역학적 힘을 계산하는 모듈을 개발하였다. 이와 같이 개발한 커널과 모듈들을 적용하여 해상 시추선의 hoisting system 동적거동 해석을 수행하고, 관절에서의 구속력을 계산하였다.

충격햄머드릴의 기구해석 및 설계 (Modeling and Design of Impact Hammer Drill)

  • 박병규;김재환;백복현;정재천
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.146-152
    • /
    • 1997
  • This paper deals with a study of striker type impact hammer drill for improving the drilling performance. The study was performed through a numerical simulation of the impact hammer mechanism, an experimental comparison of the numerical simulation results and an optimization of the impact mechanism. The numerical model of the impact hammer drill takes into account the striker motion and the effects of the pressure in the cylinder as well as the friction acting on the striker. The equation of motion is solved with the pressure equation in the cylinder and the friction force. At the moment of impact, an ideal impact model that uses restitutiion codfficient is used to calculate the sudden change of the striker motion. The impact force numerically simulated shows a good agreement with the experimental results and thus, the validity of the numerical model is proven. Based upon the proposed model, an optimization was performed to improve the impact force of the hammer drill. The objective function is to maximize the impact force and the design variables are striker mass, frequency of piston, bit guide mass, cylindrical diameter and dimensions of the mechanism components. Each design variable and some other conditions that are essential to maintain normal operation of the hammer drill are considered as constraints. The optimized result shows remarkable improvement in impact force and an experimental proof was investigated.

  • PDF

다이아몬드 코어드릴의 중공비가 절삭력에 미치는 영향 (A Study of the Effectiveness of Hollow Ratio on Cutting Force of Diamond Core Drill)

  • 김광민;최성대;홍영배
    • 한국기계가공학회지
    • /
    • 제10권2호
    • /
    • pp.135-141
    • /
    • 2011
  • In this study, the variation of the cutting forces generated in the machining process were evaluated experimentally. A material of $Al_{2}O_{3}$ ceramic and a tool of the dynamometer were used for the measurements of the cutting forces. With the constant rates of the feed and the tool rotation, the cutting forces were measured along three axial directions(X, Y, Z axis) for the various values of the hollow ratio. It was found that the cutting force be increasing linearly along the direction of Z axis, but along X, Y axis be not varied. Also from the viewpoint of the precesses of the hole drilling, the cutting force was found to be increasing sharply at the beginning process, but from the eighth process be increasing smoothly. As conclusions, the cutting force generated by machining for the material of $Al_{2}O_{3}$ ceramic are influenced more significantly by the feed rate and the hollow ratio than by the tool rotational speed.

고정밀 가공을 위한 Bunishing Drill의 Guide Pad 영향 (The influence of Guide Pads in the High Precision Cutting Process of Burnishing Drill)

  • 김종성
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.80-84
    • /
    • 1996
  • The effects of guide pads on burnishing action and accuracy of machined hole are investigated in drilling with burnishing drill using a speciaaly designed tool experimentally. The cutting forces are balanced at the small forward regions of guide pads. The burnishing action takes place under a high contact pressure between the bore wall and those regions. The over size mechanism of machined hole by the guide pads is discussed.

  • PDF