• 제목/요약/키워드: drawbead

검색결과 60건 처리시간 0.023초

블랭크 성형해석시 드로우비드 개수가 미치는 영향에 관한 연구 (The Influence of the Number of Drawbead on Blank Forming Analysis)

  • 정동원;이상제
    • 한국정밀공학회지
    • /
    • 제17권2호
    • /
    • pp.193-200
    • /
    • 2000
  • In the sheet metal forming process, the drawbead is used to control the flow of material during the forming process. The drawbead provides proper restraining force to the material and prevents defects such as wrinkling or breakage. For these reasons, many studies for designing the effective drawbead have been conducted. In this paper, the influence of the number of drawbead during the blank forming process will be introduced. For the analysis, the numerical method called the static-explicit finite element method was used. The finite element analysis code for this method has been developed and applied to the drawbead process problems. It is expected that this static-explicit finite element method could overcome heavy computation time and convergence problem due to the increase of drawbeads.

  • PDF

계단형 드로오비드의 인출특성에 관한 유한요소해석 및 실험 (Finite Element Analysis and Experiment on Drawing Characteristics through Step Drawbead)

  • 박원배;김창만;전기찬;김낙수;서대교
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 추계학술대회논문집
    • /
    • pp.128-135
    • /
    • 1995
  • Theoretical and experimental drawing characteristics for the step drawbead are discussed. The drawbead restraining forces and strains by the varous drawing angles are measured experimentally. Also, during the blank holding process, the strain distributions of upper and lower skins of specimens are analysed by the 2-D rigid-plastic F.E.M And the drawbead restraining forces and strain distributions for the drawn specimens by the drawing length are obtained by experiment.

  • PDF

드로우비드 성형시 박판재 마찰계수 영향인자 해석 (Analysis on Parameters Affecting the Friction Coefficient in Drawbead Forming of Sheet Metal)

  • 김원태;이동활;서만석;문영훈
    • 소성∙가공
    • /
    • 제14권8호통권80호
    • /
    • pp.668-674
    • /
    • 2005
  • In sheet metal forming, drawbeads are often used to control uneven material flow which may cause deffets such as wrinkles, fractures, surface distortion and springback. Appropriate setting and adjusting of the drawbead force is one of the most important parameters in sheet forming process control. Therefore in this study, drawbead friction test with circular shape bead was performed at various sheets, lubricants(dry, three kinds of lubricants having different viscosities), bead materials and surface treatments of bead surface. The results obtained by drawbead friction test show that the friction and drawing characteristics of deforming panels were mainly influenced by strength of sheet, viscosity of lubricant and hardness of bead surface.

단일원형비드 및 환저비드의 인출 특성에 관한 연구 (Restraining Characteristics for Single Circular and Round Drawbead)

  • 김창만;임영석;이항수;전기찬;서대교
    • 소성∙가공
    • /
    • 제3권4호
    • /
    • pp.454-467
    • /
    • 1994
  • The drawbead restraining forces for the various radius of drawbead and die corner are analyzed by the belt theory, and they are compared with the experimental results. During this procedure, the drawing angles are also varied from $0^{\circ}$ to $60^{\circ}$, and the near part of the drawed die corner are divided into fur steps for the theoretical analysis. The stress distributions through the sheet thickness for these steps are also suggested theoretically. The wide range of experimental data of the drawing forces and strain distributions for the various dimension and blank holding forces are presented. It is concluded that the theoretical assumption for the restraining force analysis is very useful from the comparison with the experimental results.

  • PDF

박판성형공정의 유한요소해석을 위한 드로우비드 전문모델 개발 (2부:모델링) (Development of Drawbead Expert Models for Finite Element Analysis of Sheet Metal Forming Process (Part2: Modeling))

  • 금영탁;이재우;박승우
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 춘계학술대회논문집
    • /
    • pp.50-54
    • /
    • 1997
  • An expert drawbead model is developed to model a cranky drawbead in the finite element analysis of stamping processes. The expert model calculates the drawbead restraining forces (DBRF's) and bead-exit thinning, which are boundary conditions. DBRF's are calculated by considering bending force, unbending force, and friction force in order. Bead-exit thinning are due to the bending and tension during the deformation. The DBFR's and thinning computed form the mathematical model for the basic beads are compared with measurements and correction factors compensating for the differences are found using the multiple linear regression method. The composition beads are assumed to be a combination of basic beads so that the DBRF's and bead-exit thinning are computed to the sum of those of basic beads.

  • PDF

정적 외연적 유한요소법을 이용한 드로우비드 형상에 따른 비드공정 해석 (The Analysis of Draw-bead Process According to the Effect of the Drawbead Shape by Using Static-explicit Finite Element Method)

  • 정동원
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 추계학술대회 논문집
    • /
    • pp.275-281
    • /
    • 2001
  • In the sheet metal forming process, the drawbead is used to control the flow of material during the forming process. The drawbead provides proper restraining force to the material and prevents defects such as wrinkling or breakage. For these reasons, many studies for designing the effective drawbead have been conducted. In this paper, the effect of the drawbead shape will be introduced. For the analysis, the numerical method called the static-explicit finite element method was used. The finite element analysis code for this method has been developed and applied to the drawbead process problems. In result, convergence problem and computation time due to large non-linearity in the existing numerical analysis methods were no longer a critial Problem. Futhermore, this approach could treat the contact friction problem easily by applying very small time intervals. It is expected that various results from the numerical analysis will give very useful information for the design of tools in sheet metal forming process.

  • PDF

드로우비드 형상에 따른 박판 성형공정에 미치는 영향에 관한 연구 (The Effect of the Drawbead Shape on the Sheet Metal Forming Process)

  • 정동원;이상제
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1624-1632
    • /
    • 2000
  • In the sheet metal forming process, the drawbead is used to control the flow of material during the forming process. The drawbead provides proper restraining force to the material and prevents defe cts such as wrinkling or breakage. For these reasons, many studies for designing the effective drawbead have been conducted. In this paper, the effect of the drawbead shape will be introduced. For the analysis, the numerical method called the static-explicit finite element method was used. The finite element analysis code for this method has been developed and applied to the drawbead process problems. In result, convergence problem and computation time due to large non-linearity in the existing numerical analysis methods were no longer a critical problem. Futhermore, this approach could treat the contact friction problem easily by applying very small time intervals. It is expected that various results from the numerical analysis will give very useful information for the design of tools in sheet metal forming process.

해석과 실험을 통한 박판성형공정에서의 드로오비드의 구속력에 관한 연구 (A Study on the Binding Force of Drawbead in the Sheet Metal Forming Process through the finite element and experimental analysis)

  • 반갑수;모창기;서의권
    • 한국산업융합학회 논문집
    • /
    • 제10권1호
    • /
    • pp.5-14
    • /
    • 2007
  • It is necessary for development of drawing product with press to have suitable material selection & all process design and the problem during press process has been cleared from judgement of experience & trial and error. Recently we can estimate press process result from computer aided design & FEM. But we can get more reliable result when we can put more precise process variants during FEM. In case of using a drawbead that is used for the material inflow, it is considered for us to put material property, other analysis condition & friction figure when material is passing through the drawbead for better FEM. From our study, we have drawn an analogy bead connection depth, friction figure & drawing and restraining load according to kinds of lubrication from experiment & FEM for the drawbead. We applied above result to the drawing experiment & FEM and confirmed the validity. We could notice the relation between friction figure & drawing load and the friction figure variation according to kinds of lubrication. It is expected to draw more precise analogy that can be used for real process due to more precise process variants application to FEM.

  • PDF

유한요소법에 의한 드로오비드 인출특성 연구 (A study on the drawing characteristics of drawbead by F.F.M)

  • 신양호
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 춘계학술대회 논문집
    • /
    • pp.42-47
    • /
    • 1997
  • In this study, the drawing characteristics of circular drawbead are examined with the plane strain elastic-plastic FE Method by varying the process variables such as friction coefficient, drawbead radius, and closing depth. Numerical analysis are carried out by 2-D elastic-plastic F.E.M. The results are compared with the existing experimental results about the drawing force, the die clamping force, and the strain distribution of upper and lower sheet faces

  • PDF

박판성형공정의 유한요소해석을 위한 드로우비드 전문모델 개발 (1부: 실험) (Development of Drawbead Expert Models for Finite Element Analysis of Sheet Metal Forming Process (Part1: Experiment))

  • 금영탁;이재우;박승우
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 춘계학술대회논문집
    • /
    • pp.46-49
    • /
    • 1997
  • During sheet metal forming on a double-action press, drawbeads on the blankholder supply a restraining force which controls the flow of metal into the die. The sheet formability can be improved by the optimum drawbeads installation when the punch enters into the die opening. Experiments on the various drawbeads, circular, step, double circular, and circular-step drawbead, have been performed under various working conditions.

  • PDF