• Title/Summary/Keyword: drawability

Search Result 87, Processing Time 0.041 seconds

Effect of Temper Rolling on Formability and Baking Hardenability in Baking Hardenable Steels for Auto Body Outer Panel (자동차 외판용 BH강판에서 성형성과 소부경화성에 미치는 조질압연의 영향)

  • Ko H. S.;Moon M. B.;Shin C. S.;Oh H. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.37-44
    • /
    • 2004
  • Automotive company has been endeavoring to develop high strength steels to get higher fuel efficiency of car since the oil shortage in 1970s and to cope with the recent strict environmental regulation. Outer panels(Hood, Roof, Door and Fender) for automobile require higher dent resistance. Bake-hardenable(BH) steels are known as useful for their high deep drawability and high dent resistance. Recently BH steels are increasingly adapted for outer panel use due to their high drawability and high dent resistance. In this study effect of temper rolling on formability (textures, r value) and bake hardenability is investigated fur improving characteristic of bake-hardenable steels.

  • PDF

An Investigation on the Mechanical Behaviors of Lubricant and Coating to Improve the Drawability of Non-heat Treated Steels (열처리 생략강의 인발특성 향상을 위한 윤활제와 피막제의 기계적 거동 고찰)

  • Lee, Sang-Jun;Yoo, Ui-Kyung;Lee, Young-Seog;Byon, Sang-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.62-67
    • /
    • 2008
  • In this research, we developed a pilot wire-drawing machine as well as wire end-pointing roller. Using these machines, we performed a pilot wire-drawing test at different coating material and lubricant when the reduction ratio is 10 %. To inversely compute the friction coefficient between the coating layer of wire and the surface of die for a specific lubricant, we carried out a series of three dimensional finite element analysis. Results show that the drawing force is varied with the coating material of wire at the same reduction ratio and lubricant. It is noted that the frictional coefficient in drawing is dependent on the coupled property of coating material and lubricant, indicating the best coating material for a given lubricant.

  • PDF

Characteristics of the Warm Deep Drawability of a Transformation-Induced Plasticity Steel Sheet

  • 서대교;장성호;공경환
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.221-221
    • /
    • 1999
  • Warm deep drawability in a square cup drawing was investigated using a newly developed high-strength steel sheet with retained austenite that was transformed into martensite during formation. For this investigation, six different temperatures between room temperature and 250℃, and five different drawing ratios ranging from 2.2 to 2.6 were considered. The results showed that the maximum drawing force and the drawing depth were affected by the change in temperature, and a more stable thickness strain distribution was observed at elevated temperatures. However, blue shortness occurred at over 200℃. FEM analysis using the LS-DYNA code was used to compare the experimental results with the numerical results for the thickness strain distribution.

Tool Temperatures to Maximize the Warm Deep-drawability of AZ31B Sheets (AZ31B 판재의 온간 디프드로잉 성형성 극대화를 위한 금형 온도)

  • Choi, S.C.;Kim, H.J.;Kim, H.Y.;Hong, S.M.;Shin, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.66-70
    • /
    • 2008
  • In this study, the formability of AZ31B magnesium alloy sheets was investigated by the analytical and experimental approaches. Tensile tests and limit dome height tests were rallied out at several temperatures between $25^{\circ}C$ and $300^{\circ}C$ to obtain the mechanical properties and forming limit diagram (FLD). The FLD-based criterion considering the strain-path and the blank temperature was used to predict the forming limit in a deep-drawing process of cross-shaped cup by finite element analysis. This criterion proved to be very useful in determining the optimal process conditions such as blank shape, punch velocity, minimum comer radius, fillet size, and so on, through the comparison between FEA and experimental data. In particular, the temperature of each tool that provided the best formability of the blank was determined by coupled temperature-deformation analyses. A practical method that can greatly reduce the forming time by increasing the punch speed during the forming process was suggested.

  • PDF

Deep Drawing With Internal Air-Pressing to Increase The Limit Drawing Ratio of Aluminum Sheet

  • Moon, Young-Hoon;Kang, Yong-Kee;Park, Jin-Wook;Gong, Sung-Rak
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.459-464
    • /
    • 2001
  • The effects of internal air-pressing on deep drawability are investigated in this study to increase the deep drawability of aluminum sheet. The conventional deep drawing process is limited to a certain limit drawing ratio(LDR) beyond which failure will occur. The intention of this work is to examine the possibilities of relaxing the above limitation through the deep drawing with internal air-pressing, aiming towards a process with an increased drawing ratio. The idea which may lead to this goal is the use of special punch that can exert high pressure on the internal surface of deforming sheet during the deep drawing process. Over the ranges of conditions investigated for Al-1050, the local strain concentration at punch nose radius area was decreased by internal air-pressing of punch, and the deep drawing with internal air-pressing was proved to be very effective process for obtaining higher LDR.

  • PDF

Changes of Texture and Plastic Strain Ratio of Asymmetrically Rolled and Annealed Cu Sheet (I) (비대칭 압연과 열처리한 Cu 판의 집합조직과 소성변형비 변화 (I))

  • Lee, C.W.;Lee, D.N.;Kim, I.
    • Transactions of Materials Processing
    • /
    • v.28 no.6
    • /
    • pp.354-360
    • /
    • 2019
  • The plastic strain ratio is one of the factors that affect the deep drawability of metal sheets. The plastic strain ratio of fully annealed Cu sheet is low because its texture has {001}<100>. In order to improve the deep drawability of Cu sheet, it is necessary to increase the plastic strain ratio of Cu sheet. This study investigate the increase of plastic strain ratio of a Cu sheet after the first asymmetry rolling and annealing, and the second asymmetry rolling and annealing in air and Ar gas conditions. The average plastic strain ratio (Rm) was 0.951 and |ΔR| value was 1.27 in the initial Cu sheet. After the second 30.1% asymmetric rolling and annealing of Cu sheet at 1000℃ in air condition, the average plastic strain ratio (Rm) was 1.03 times higher. However, |ΔR| was 0.12 times lower than that of the initial specimen. After the second 18.8% asymmetric rolling and annealing of Cu sheet at 630℃ in Ar gas condition, the average plastic strain ratio (Rm) was 1.68 times higher and |ΔR| was 0.82 times lower than that of the initial specimen. These results are attributed to the change of the texture of Cu sheet due to the different annealing conditions.

Effect of I/d Parameter on Recrystallization Textures of AA5182 Alloy Sheets (5182 알루미늄 합금판재의 재결정 집합조짓에 대한 I/d 파라메타의 영향)

  • Kim, Kee-Joo;Won, Si-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.9
    • /
    • pp.1086-1093
    • /
    • 2011
  • To fabricate the aluminum alloys with good drawability, the textures evolution of the AA5182 sheets due to the change of lid parameter after rolling and subsequent annealing was studied. The measurement of the deformation textures was carried out for the sheets with high reduction ratio and the change of the recrystallization texture was investigated after heat-treatments of the rolled sheets in various I/d parameters. Rolling without lubrication and subsequent annealing led to the formation of favorable rot-$C_{ND}$ {001}<110> and ${\gamma}$-fiber ND//<111> textures in AA5182 sheets. From the results, the ${\gamma}$-fiber ND//<111> component well evolved during rolling at high lid parameter of 6.77. The initial shear deformation texture, especially, ${\gamma}$-fiber ND//<111> was not rotated during heat treatment in holding time of 180~7,200 seconds on AA5182 with I/d parameter of 6.77. Therefore, the AA5182 sheets were fabricated by controlling I/d parameter having well evolved ${\gamma}$-fiber ND//<111> which was advantageous in good drawability of the sheets.

A Study on the Formability of Magnesium Alloy in Warm Temperature (고온상태에서 마그네슘 합금의 디프드로잉 성형성에 관한 연구)

  • Kang, Dae-Min;Hwang, Jong-Kwan;El-Morsy, A.M.;Manabe, Ken-Ichn
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.2
    • /
    • pp.84-90
    • /
    • 2003
  • Magnesium alloys have been paid attention In automotive and industries as lightweight materials, and with these materials it has been attempted at deep drawing process for assessment of formability of sheet metal. For warm deep drawing process with a local heating and cooling technique, both die and blank holder were heated at warm temperature while the punch was kept at room temperature by cooling water. Warm deep-drawing process with considering heat transfer was simulated by finite element method to investigate the improvement of deep-drawability and temperature distribution of Mg alloy sheet. The effect of sham rate sensitivity index on the deformation profile was considered in this work and the simulation results revealed that considering heat transfer is very effective for deep-drawability of Mg alloy. The deformed blank In considering heat transfer was drawn successfully without any localized thinning and the cup height is higher in contrast to results of simulations in considering no heat transfer.

  • PDF