• Title/Summary/Keyword: drastic model

Search Result 121, Processing Time 0.015 seconds

Development of a groundwater contamination potential evaluation technique by improving DRASTIC Index for a tunnel excavation area (개선된 DRASTIC 기법을 이용한 터널굴착 예정지역의 지하수 오염 가능성 평가기법 개발에 관한 연구)

  • Park, Jun-Kyung;Park, Young-Jin;Wye, Yong-Gon;Choi, Young-Tae;Lee, Han-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.1
    • /
    • pp.71-88
    • /
    • 2003
  • The DRASTIC system is widely used for assessing regional groundwater pollution susceptibility by using hydrogeological factors such as depth to water, net recharge, aquifer media, soil media, topography, vadose zone media, hydraulic conductivity. This study is providing Modified Drastic Model to which lineament density, land use, influence of groundwater drawdown caused by tunnel excavation are added as additional factors using geographic information system, and then to evaluate groundwater contamination potential of ${\bigcirc}{\bigcirc}$ area. For statistical analysis, vector coverage per each factor is converted to grid layer and after each correlation coefficient between factors, covariance, variance, eigenvalue and eigenvector by principal component analysis of 3 direction, are calculated, correlation between factors is analyzed. Also after correlation coefficients between general DRASTIC layer and rated lineament density layer, between general DRASTIC layer and rated land use layer, between general DRASTIC layer and rated tunnel excavation influence layer are calculated, final modified DRASTIC model is constructed by using them with each weighting. When modified DRASTIC model was compared with general DRASTIC model, contamination potential in modified DRASTIC model is fairly detailed and consequently, vulnerable area which has high contamination potential could be presented concretly.

  • PDF

A Comparative Application of DRASTIC and SINTACS Models for The Assessment of Groundwater Vulnerability of Buyeo Area (DRASTIC과 SINTACS 모델의 비교적용에 의한 부여읍 일대의 지하수 오염 취약성 평가)

  • Kang, Jin-Hee;Park, Eun-Gyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.5
    • /
    • pp.32-39
    • /
    • 2010
  • In this study, we applied DRASTIC and SINTACS models for the assessment of groundwater vulnerability to Buyeo-eup area in Buyeo-gun, Chungcheongnam-do, Korea. Currently, DRASTIC model is a main tool for the assessment of groundwater vulnerability, which has been widely applied for the multiple purposes related to local developments, construction projects, groundwater investigations, etc. since 1980s. Because DRASTIC model has been the sole tool used for the domestic environment, there has been doubt about the degree of reliability of the model, and a benchmark model has been sought by the many practitioners. The objective of this study is to check the applicability of SINTACS model to domestic environment, which is the first attempt in Korea as far as authors understand. The comparative results show that the DRASTIC assessment underestimates groundwater vulnerability of the aquifers composed of fractured bedrocks while that from the SINTACS model is relatively higher. Through this study, it is expected that SINTACS model serves as a reasonable alternative of DRASTIC model where the subsurface is composed of more than two different media such as fractured rocks and alluvium.

A Study on Groundwater Contamination Potential of Pyungtaek-Gun Area, Kyunggi-Do Using GIS (GIS를 이용한 경기도 평택군 지역의 지하수 오염 가능성 평가 연구)

  • 조시범;민경덕;우남칠;이사로
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.2
    • /
    • pp.87-94
    • /
    • 1999
  • This study is providing Modified DRASTIC Model to which lineament density and land use are added as additional factors using geographic infomation system(GIS). and then to evaluate groundwater contamination potential of Pyungtek-Gun area in Kyunggi-Do. In this study. the reason for using additional factors is because. in case of lineament density. when we consider that most of aquifer is bedrock aquifer in hydrogeologic environment of the Korea, lineament is very important to flow of groundwater and contamination material. and because land use can reflect indirectly impact of point or non_point source in study area. For statistical analysis. vector coverage per each factor is converted to grid layer and after each correlation coefficient between factors, covariance, variance. eigenvalue and eigenvector by principal component analysis of 3 direction. are calculated. correlation between factors is analyzed. Also after correlation coefficients between general DRASTIC layer and rated lineament density layer and between general DRASTIC layer and rated land use layer are calculated. final modified DRASTIC Model is constructed by using them with each weighting. when modified DRASTIC Model was compared with general DRASTIC Model, comtamination potential in modified DRASTIC Model is fairly detailed and consequently. vulnerable area which has high contamination potential could be presented concretly.

  • PDF

Groundwater Vulnerability of Some Cemeteries in Gyeonggi Province (경기도 일부 공원묘역의 지하수 오염가능성)

  • Lee, Jae-Hwang;Lee, Jun-Soo;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.5
    • /
    • pp.330-341
    • /
    • 2008
  • The purpose of this study was to investigate the vulnerability for groundwater contamination at the some cemeteries in Gyeonggi Province. Twenty-eight out of 43 cemeteries in Gyeonggi province were selected for this study. The DRASTIC model was applied to those cemeteries, and the reliance of the model was assessed using the water quality data of the target areas. The DRASTIC model was used for the assessment of the potential for groundwater contamination using hydrogeological factors. Seven factors including depth of water, net recharge, aquifer media, soil media, topography, impact of the vadose zone, hydraulic conductivity of the aquifer were assessed. The DRASTIC index of the study area ranged from 82 to 126 with an average value of $113.99(\pm11.48)$. The DRASTIC index was relatively greater in the northern Gyeonggi province than that in the southern area. The DRASTIC index was similar for the areas with the similar burial rate and burial density. This study demonstrated that burial rate and burial density should be considered along with the 7 basic factors for the evaluation of groundwater vulnerability of the cemeteries.

Assessment of Groundwater Contamination Vulnerability in Miryang City, Korea using Advanced DRASTIC and fuzzy Techniques on the GIS Platform (개선된 DRASTIC 기법과 퍼지기법을 이용한 밀양지역 지하수오염 취약성 평가)

  • Chung, Sang Yong;Elzain, Hussam Eldin;Senapathi, Venkatramanan;Park, Kye-Hun;Kwon, Hae-Woo;Yoo, In Kol;Oh, Hae Rim
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.4
    • /
    • pp.26-41
    • /
    • 2018
  • The purpose of this study is to improve the Original DRASTIC Model (ODM) for the assessment of groundwater contamination vulnerability on the GIS platform. Miryang City of urban and rural features was selected for the study area to accomplish the research purpose. Advanced DRASTIC Model (ADM) was developed adding two more DRASTIC factors of lineament density and landuse to ODM. The fuzzy logic was also applied to ODM and ADM to improve their ability in evaluating the groundwater contamination vulnerability. Although the vulnerability map of ADM was a little simpler than that of ODM, it increased the area of the low vulnerability sector. The groundwater vulnerability maps of ODM and ADM using DRASTIC Indices represented the more detailed descriptions than those from the overlap of thematic maps, and their qualities were improved by the application of fuzzy technique. The vulnerability maps of ODM, ADM and FDM was evaluated by NO3-N concentrations in the study area. It was proved that ADM including lineament density and landuse factors produced a more reliable groundwater vulnerability map, and fuzzy ADM (FDM) made the best detailed groundwater vulnerability map with the significant statistical results.

A STUDY ON THE PREDICTION OF GROUNDWATER CONTAMINATION USING GIS (지하수오염 예측을 위한 GIS 활용연구)

  • Jo, SiBeom;Shon, HoWoong
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.2
    • /
    • pp.121-134
    • /
    • 2004
  • This study has tried to develop the modified DRASTIC Model by supplying the parameters, such as structural lineament density and land-use, into conventional DRASTIC model, and to predict the potential of groundwater contamination using GIS in Hwanam 2 District, Gyeonggi Province, Korea. Since the aquifers in Korea is generally through the joints of rock-mass in hydrogeological environment, lineament density affects to the behavior of groundwater and contaminated plumes directly, and land-use reflect the effect of point or non-point source of contamination indirectly. For the statistical analysis, lattice-layers of each parameter were generated, and then level of confidence was assessed by analyzing each correlation coefficient. Groundwater contamination potential map was achieved as a final result by comparing modified DRASTIC potential and the amount of pollutant load logically. The result suggest the predictability of contamination potential in a specified area in the respects of hydrogeological aspect and water quality.

  • PDF

Groundwater pollution risk mapping using modified DRASTIC model in parts of Hail region of Saudi Arabia

  • Ahmed, Izrar;Nazzal, Yousef;Zaidi, Faisal
    • Environmental Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.84-91
    • /
    • 2018
  • The present study deals with the management of groundwater resources of an important agriculture track of north-western part of Saudi Arabia. Due to strategic importance of the area efforts have been made to estimate aquifer proneness to attenuate contamination. This includes determining hydrodynamic behavior of the groundwater system. The important parameters of any vulnerability model are geological formations in the region, depth to water levels, soil, rainfall, topography, vadose zone, the drainage network and hydraulic conductivity, land use, hydrochemical data, water discharge, etc. All these parameters have greater control and helps determining response of groundwater system to a possible contaminant threat. A widely used DRASTIC model helps integrate these data layers to estimate vulnerability indices using GIS environment. DRASTIC parameters were assigned appropriate ratings depending upon existing data range and a constant weight factor. Further, land-use pattern map of study area was integrated with vulnerability map to produce pollution risk map. A comparison of DRASTIC model was done with GOD and AVI vulnerability models. Model validation was done with $NO_3$, $SO_4$ and Cl concentrations. These maps help to assess the zones of potential risk of contamination to the groundwater resources.

A Study on the Prediction of Groundwater Contamination using GIS (GIS를 이용한 지하수오염 예측에 관한 연구)

  • Jo, Si-Beom;Shon, Ho-Woong;Lee, Kang-Won
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.2 s.29
    • /
    • pp.17-28
    • /
    • 2004
  • This study has tried to develop the modified DRASTIC Model by supplying the parameters, such as structural lineament density and land-use, into conventional DRASTIC model, and to predict the potential of groundwater contamination using GIS in Hwanam 2 District, Gyeonggi Province, Korea. Since the aquifers in Korea is generally through the joints of rock-mass in hydrogeological environment, lineament density affects to the behavior of groundwater and contaminated plumes directly, and land-use reflect the effect of point or non-point source of contamination indirectly. For the statistical analysis, lattice-layers of each parameter were generated, and then level of confidence was assessed by analyzing each correlation coefficient. Groundwater contamination potential map was achieved as a final result by comparing modified DRASTIC potential and the amount of pollutant load logically. The result suggest the predictability of contamination potential in a specified area in the respects of hydrogeological aspect and water quality.

  • PDF

A Study on the Prediction of Groundwater Contamination using the GIS in Hwanam 2 Sector, Gyeonggi Province, Korea (GIS를 이용한 경기도 화남2지구의 지하수오염 예측에 관한 연구)

  • Son, Ho-Ung
    • The Journal of Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.89-107
    • /
    • 2004
  • This study has tried to develop the modified DRASTIC Model by supplying the parameters, such as structural lineament density and landuse, into conventional DRASTIC model, and to predict the potential of groundwater contamination using GIS in Whanam 2 Area, Gyeonggi Province, Korea. Since the aquifers in Korea is generally through the joints of rock-mass in hydrogeological environment, lineament density affects to the behavior of groundwater and contaminated plumes directly, and land-use reflect the effect of point or non-point source of contamination indirectly. For the statistical analysis, lattice layers of each parameter were generated, and then level of confidence was assessed by analyzing each correlation coefficient. Composite contamination map was achieved as a final result by comparing modified DRASTIC potential and the amount of generation load of several contaminant sources logically. The result could suggest the predictability of the area of contamination potential on the respects of hydrogeological aspect and water quality.

  • PDF

Evaluation of Meymeh Aquifer vulnerability to nitrate pollution by GIS and statistical methods

  • Tabatabaei, Javad;Gorji, Leila
    • Membrane and Water Treatment
    • /
    • v.10 no.4
    • /
    • pp.313-320
    • /
    • 2019
  • Increasing the concentration of nitrate ions in the soil solution and then leaching it to underground aquifers increases the concentration of nitrate in the water, and can cause many health and ecological problems. This study was conducted to evaluate the vulnerability of Meymeh aquifer to nitrate pollution. In this research, sampling of 10 wells was performed according to standard sampling principles and analyzed in the laboratory by spectrophotometric method, then; the nitrate concentration zonation map was drawn by using intermediate models. In the drastic model, the effective parameters for assessing the vulnerability of groundwater aquifers, including the depth of ground water, pure feeding, aquifer environment, soil type, topography slope, non-saturated area and hydraulic conductivity. Which were prepared in the form of seven layers in the ARC GIS software, and by weighting and ranking and integrating these seven layers, the final map of groundwater vulnerability to contamination was prepared. Drastic index estimated for the region between 75-128. For verification of the model, nitrate concentration data in groundwater of the region were used, which showed a relative correlation between the concentration of nitrate and the prepared version of the model. A combination of two vulnerability map and nitrate concentration zonation was provided a qualitative aquifer classification map. According to this map, most of the study areas are within safe and low risk, and only a small portion of the Meymeh Aquifer, which has a nitrate concentration of more than 50 mg / L in groundwater, is classified in a hazardous area.