• Title/Summary/Keyword: drape

Search Result 187, Processing Time 0.02 seconds

Eco-friendly Leather Dyeing using Biomass Wastes(I): Natural Dyeing of Eel Skin using Onion Peels (생물자원 폐기물을 활용한 친환경 가죽염색(I): 양파껍질을 이용한 장어가죽 천연염색)

  • Yeo, Youngmi;Yoo, Dong Il;Shin, Younsook
    • Textile Coloration and Finishing
    • /
    • v.30 no.2
    • /
    • pp.141-149
    • /
    • 2018
  • This study aimed to investigate the efficacy of eco-friendly leather dyeing by utilizing food wastes. Natural dyeing of eel skin was attempted using onion peels which have been used commonly for natural dyeing of textile fabrics. Eel skin is a by-product from fishery processing and is used mainly for making leather products. The colorant was extracted from onion peels in boiling water, concentrated, and freeze-dried. Dyeing of eel skin was carried out to study the effects of dyeing conditions, mordant type and mordanting method on dye uptake, color change, drape stiffness and colorfastness. The optimum dyeing conditions were $60^{\circ}C$ of dyeing temperature, 60min of dyeing time at 1:100($H_2O$ 90%: ethanol 10%) of bath ratio. The onion peels produced yellowish color on eel skin. The pre-mordanting was effective than the post-mordanting. As a result of the drape stiffness measurement, the Fe-mordanted sample was somewhat stiffer comparing to other mordanted samples. The light fastness of the non-mordant dye was excellent in 3-4 grade. Drycleaning fastness and rubbing fastness showed excellent results, but fastness was not significantly improved by mordanting.

Analysis of Types of Gather Drape with Visual Evaluation (시각적 평가에 의한 개더 드레이프 형상 분석)

  • Lee Myung-Hee;Jung Hee-Kyeong
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.7 no.1
    • /
    • pp.33-40
    • /
    • 2005
  • Gathering is method used to control fullness along a seam line. The purpose of this study was to investigate the relationship between the quantitative research and qualitative method; the effect of gather and the types of gather drape. The experimental design consists of four factors: (l) three kinds of different weight and thickness of fabrics (2) three kinds of stitch densities (3) five kinds of ratio of gathers (4) three kinds of grain directions. Therefore one hundred thirty five (135) samples were made. And utilized SPSS WIN 10.0 Package in data analysis. The results of this study were as follows; First, after frequency analysis, side height, hem line width, node depth, node count, node width accorded with these result data recording. Second, after correlation analysis, side height related with front statements. Side height and entire visual was negative correlation. Hem line width, node depth, node count with section statements was negative correlation but node width at section statements was positive correlation. Third, after $k^2$ analysis, front picture parts getting excellent evaluation were 1st side height, 3rd hem line width, 4th node depth, 3rd node count, 3rd node width. And section illustration parts getting excellent evaluation were 4th side height, 1st hem line width, 2nd node depth, 3rd node count, 4th node width.

  • PDF

The Physical Properties and Dyeability of KOH Treated Cotton Fabrics (KOH 처리 면직물의 물성 및 염색성)

  • Song, Hyun-Joo;Kim, Su-Mi;Song, Wha-Soon
    • Fashion & Textile Research Journal
    • /
    • v.7 no.1
    • /
    • pp.91-95
    • /
    • 2005
  • The purpose of this study is to investigate the improvement of fiber surface, physical properties and research the physical properties and dyeability of cotton fabrics treated with KOH solution at low and high temperature. The treatment conditions for mercerization with KOH were changed various temperatures(25, $90^{\circ}C$), concentrations(15, 20, 25, 30%. w/v) and times(30, 60, 180, 300sec). The effects of mercerization after KOH treatment estimated with tensile strength, tearing strength, shrinkage, drape stiffness, moisture regain, fiber surface, and dyeability. The optimal conditions were concentration of KOH 20%, time 180sec in low temperature and concentration of KOH 20%, time 60sec in high temperature. The results are as follows; Tensile strength, tearing strength and moisture regain were much improved than those of untreated cotton fabric. Shrinkage and drape stiffness of KOH treated cotton were more increased at $25^{\circ}C$ than $90^{\circ}C$. Fiber surface showed more rounded shape at $25^{\circ}C$ than $90^{\circ}C$. Dyeability of cotton fabrics improved by KOH treatment.

Physical Performance of Metallic Jacquard Fabrics (메탈릭 자카드 직물 물리적 성능평가)

  • Kang, Duck-Hee;Lee, Jung-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.1
    • /
    • pp.149-159
    • /
    • 2009
  • The purposes of this study are to evaluate physical performance of metallic Jacquard fabrics, and to contribute to the research and development of the women's suit made of the metallic Jacquard fabrics. First, eight fabrics were woven with two kinds of warp yarns(nylon and rayon) and weft yarn blended with various contents(0, 7, 14, 21%) of metallic yarn. Second, the mechanical properties were measured by using the KES-FB system, and physical properties such as tensile strength, tearing strength, abrasion resistance, drape, pilling, snagging, degree of crease resistance, flexural stiffness, specular gloss, folding endurance and electrostatic propensity were measured. The results were as follows. As the metal fiber content increased, bending, shear, thickness and weight increased, which imply low recovery of wrinkles. It means that metallic Jacquard fabrics enable to use as a memory fabric. 7% metallic Jacquard fabric showed a low value at total hand value, but there was little change. As the metal fiber content increased, tensile strength, tearing strength, drape coefficient, specular gloss and flexural stiffness increased, however the degree of crease resistance, electrostatic propensity and folding endurance decreased. The metallic Jacquard fabrics were excellent in snagging, abrasion resistance and pilling.

Deposition for PET Fabric of Macban Stone with RF Sputtering (RF Sputtering을 이용한 맥반석의 PET 직물에의 증착)

  • Lee, Hye-Ryeon;Choi, Soon-Hwa
    • Fashion & Textile Research Journal
    • /
    • v.8 no.1
    • /
    • pp.129-133
    • /
    • 2006
  • To develope a high value-added fiber products which is useful in the human body physiology, the Macban stone was deposited on the PET fabric by sputtering and its effects were investigated. Then, a Macban stone target was prepared for sputtering treatment and treated on the PET fabric by RF sputtering process. After treatment, surface observation by SEM, far-infrared emissivity and emissive power, the fastness to washing and light, bacteriostatic rate, electrostatic, drape stiffness, and breaking strength of PET fabric were investigated. From these investigation, the following conclusions were obtained. 1) The Macban stone was able to deposit on the PET fabric, by the RF sputtering treatment which is eco-friendly dry textile finishing. 2) The far-infrared emissivity and emissive power of sputtered PET fabrics were increased. 3) When PET fabric was treated by sputtering with Macban stone, the amount of deposited Macban stone increased with increasing treatment time and it was deposited on the fabric surface firmly. 4) The bacteriostatic rate of sputtered PET fabrics was about 20%. 5) The electrostatic charge of fiber surface was reduced by sputtering. 6) The fastness washing to light of dyed fabric were improved by the deposition of Macban stone, but the breaking strength was not changed by sputtering. 7) The drape stiffness of sputtered PET fabrics increased with increasing treatment time.

Application of Hand Towel Drape over Dingman Mouth Gag

  • Choi, Kyeong Beom;Park, Myong Chul
    • Archives of Craniofacial Surgery
    • /
    • v.16 no.1
    • /
    • pp.29-30
    • /
    • 2015
  • In cleft palate surgery, the environment is especially critical when suturing. Encum-bered, obstructive space in the environment can hinder a suture while using the Dingman mouth gag. We introduced a novel but simple draping technique. A simple hand towel is placed over the gag. A hole is cut out in the middle according to each patient's mouth. After making the hole, the hand towel is soaked in water and gently squeezed. Then the towel is properly placed over the Dingman mouth gag. Dripping water on the hand towel during the suture helps keep it in place. Using this draping technique, we cut 14 minutes of operation time compared to the average operation time of the past 2 years. There were several disadvantages in previous draping method. First, long suture material may easily get caught. Second, the operation field can easily be contaminated. Third, focusing on the operation becomes difficult due to the obstruction. This draping technique can compensate for the disadvantages of the previous Dingman mouth gag.

The Changes of Appearance Formability of Hanji Blended Fabrics after Fusing (한지사 혼용 직물의 접착심 접착 후 외관 형성능의 변화)

  • Jee, Ju-Won
    • Human Ecology Research
    • /
    • v.59 no.1
    • /
    • pp.13-21
    • /
    • 2021
  • In order to examine the changes in the appearance properties and the post-adhesion appearance properties of Hanji yarn blended fabrics : 100% Hanji yarn fabric, two kinds of cotton / Hanji yarn blended fabrics and 100% cotton fabric, were selected and fused with three kinds of interlinings. After fusing, changes of standardized KES values were examined. 1. W/T, B/W of Hanji yarn blended fabrics was higher than that cotton fabric. WC/W, 2HB/W, 2HB/B, and 2HG/G values of Hanji yarn blended fabrics are lower than cotton fabric. This means that the Hanji yarn was mixed, shape retention, wrinkle recovery was improved, and the drape property was lowered. 2. After fusing, W/T, shape retention, wrinkle recovery of Hanji yarn blended fabrics increased, and WC/W values of Hanji yarn blended fabrics decreased. The wrinkle recovery property of Hanji yarn blended fabrics were improved; however, the 2HG/G value of Hanji yarn fabric increased due to fusing, and the wrinkle recovery property of Hanji yarn fabric decreased. 3. In the selection of adhesive core, I1 adhesive core is excellent in terms of shape stability and wrinkle recovery; however, an I3 adhesive core is recommended for drape and silhouette formation. When the fabric of the adhesive core was PET, it was found to penetrate better between the fabrics during adhesion than the case of cotton fabrics.

Washing Treatment Effects on Cotton and Kenaf Blend Fabrics (면섬유와 케나프섬유를 혼방한 직물과 편성물에 대한 워싱 처리 효과)

  • Lee, Hye-Ja;Yoo, Hye-Ja;Lim, Hee-Jeong
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.3
    • /
    • pp.448-458
    • /
    • 2010
  • Kenaf has a rigid and rough touch that inhibits the use of it as a textile material; therefore, this study developed a novel textile material using kenaf. Kenaf and cotton were blended in the ratio of 3:7 and manufactured as 20' spun yarn that was compared to 20's spun yarn made of 100% cotton. Both kenaf/cotton-blended and 100% cotton spun yarn were constructed as plain woven and knitted fabrics. Four kinds of fabrics were prepared as follows. Plain kenaf/cotton-woven fabrics, plain cotton-woven fabrics, kenaf/cotton jersey, and cotton jersey. A cellulase washing process was carried out to reduce the character of kenaf/cotton-blended fabrics, rigid, and rough touch. All fabrics were pretreated with NaOH. NaOH at the concentrations of 0, 0.25, 1.25, and 2.25mol/L, and cellulase at concentrations of 0, 1, 3 and 5g/L were used since the pretreatment of NaOH has a higher efficiency of weight loss than $Na_2CO_3,\;K2CO_3$ and Triton X-100. The ratio of weight loss, tensile strength, stiffness, drape property, and surface appearance were measured in order to evaluate the efficiency of the washing treatment on fabrics. Kenaf/cotton-blended fabrics exhibited more rigid and rough features than cotton fabrics. A cotton jersey showed significant differences in the degree of stiffness and drape properties. When all fabrics were treated with 1.25mol/L of NaOH and 3g/L of cellulase, kenaf/cotton-blended fabrics showed a higher retention ratio of tensile strength than cotton fabrics after washing despite the increased weight l08s of kenaf-blended fabrics compared to cotton fabrics. The ratio of weight loss for all fabrics was well correlated with flexibility. The washing treatment process made woven fabrics more flexible than knitted fabrics, because the stiffness of woven fabrics made the rubbing actions stronger. Kenaf/cotton-blended fabrics showed a significantly higher ratio of weight loss and more reduction in stiffness than cotton fabrics after the washing treatment. This might be due to the lack of cohesiveness and easy elimination from fabrics. The drape property of kenaf-blended fabrics was superior to cotton fabrics.

Cotton-Based Laminates from Spunbond Line

  • Suh, Ha-Geun;Wadsworth, Larry C.;Charles Allen. Jr., H.
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.04a
    • /
    • pp.238-243
    • /
    • 1998
  • Disposable nonwovens entered the medical field over four decades ago, beginning with basic paperlike face masks and proceeding through sterilization wrap, specialty drapes and gowns. These medical nonwovens have proven to be invaluable in products ranging from drape sheets to surgical gowns to adult pads and underpads by utilizing a gamut of nonwoven structures. The combining of nonwoven technologies has enabled the industry to offer products with properties hitherto though impossible.(omitted)

  • PDF

Compressive Characteristics of Fabric Composites with Various Conditions (여러 가지 조건을 가진 직물 복합재료 시편의 압축특성)

  • Cheon Seong Sik;Oh Je Hoon;Chang Seung Hwan
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.135-138
    • /
    • 2004
  • Because the compressive properties such as compressive stiffness and compressive maximum strength of the fabric composite materials are essential to analyse the drape behaviour and estimate the quality of the final products, compressive tests of fabric composites with different stacking sequences were performed. Appropriate shape and dimensions for the compressive test specimens were prepared and several specimens with different conditions were tested and compared with each other.

  • PDF