• Title/Summary/Keyword: drained shear tests

Search Result 53, Processing Time 0.022 seconds

Shear infiltration and constant water content tests on unsaturated soils

  • Rasool, Ali Murtaza;Aziz, Mubashir
    • Geomechanics and Engineering
    • /
    • v.19 no.5
    • /
    • pp.435-445
    • /
    • 2019
  • A series of element tests with different drainage conditions and strain rates were performed on compacted unsaturated non-plastic silt in unconfined conditions. Soil samples were compacted at water contents from dry to wet of optimum with the degree of saturation varying from 24 to 59.5% while maintaining the degree of compaction at 80%. The tests performed were shear infiltration tests in which specimens had constant net confining pressure, pore air pressure was kept drained and constant, just before the shear process pore water pressure was increased (and kept constant afterwards) to decrease matric suction and to start water infiltration. In constant water content tests, specimens had constant net confining pressure, pore air pressure was kept drained and constant whereas pore water pressure was kept undrained. As a result, the matric suction varied with increase in axial strain throughout the shearing process. In both cases, maximum shear strength was obtained for specimens prepared on dry side of optimum moisture content. Moreover, the gradient of stress path was not affected under different strain rates whereas the intercept of failure was changed due to the drainage conditions implied in this study.

Mechanical behaviour of biocemented sand under triaxial consolidated undrained or constant shear drained conditions

  • Hang, Lei;Gao, Yufeng;He, Jia;Chu, Jian
    • Geomechanics and Engineering
    • /
    • v.17 no.5
    • /
    • pp.497-505
    • /
    • 2019
  • Biocementation based on the microbially induced calcite precipitation (MICP) process is a novel soil improvement method. Biocement can improve significantly the properties of soils by binding soil particles to increase the shear strength or filling in the pores to reduce the permeability of soil. In this paper, results of triaxial consolidated undrained (CU) tests and constant shear drained (CSD) tests on biocemented Ottawa sand are presented. In the CU tests, the biocemented sand had more dilative behaviour by showing a higher stress-strain curves and faster pore pressure reducing trends as compared with their untreated counterparts. In the CSD tests, the stress ratio q/p' at which biocemented sand became unstable was higher than that for untreated sands, implying that the biocementation will improve the stability of sand to water infiltration or liquefaction.

Shear strength characteristics of a compacted soil under infiltration conditions

  • Rahardjo, H.;Meilani, I.;Leong, E.C.;Rezaur, R.B.
    • Geomechanics and Engineering
    • /
    • v.1 no.1
    • /
    • pp.35-52
    • /
    • 2009
  • A significantly thick zone of steep slopes is commonly encountered above groundwater table and the soils within this zone are unsaturated with negative pore-water pressures (i.e., matric suction). Matric suction contributes significantly to the shear strength of soil and to the factor of safety of unsaturated slopes. However, infiltration during rainfall increases the pore-water pressure in soil resulting in a decrease in the matric suction and the shear strength of the soil. As a result, rainfall infiltration may eventually trigger a slope failure. Therefore, understanding of shear strength characteristics of saturated and unsaturated soils under shearing-infiltration (SI) conditions have direct implications in assessment of slope stability under rainfall conditions. This paper presents results from a series of consolidated drained (CD) and shearing-infiltration (SI) tests. Results show that the failure envelope obtained from the shearing-infiltration tests is independent of the infiltration rate. Failure envelopes obtained from CD and SI tests appear to be similar. For practical purposes the shear strength parameters from the CD tests can be used in stability analyses of slopes under rainfall conditions. The SI tests might be performed to obtain more conservative shear strength parameters and to study the pore-water pressure changes during infiltration.

Evaluation on Partially Drained Strength of Silty Soil With Low Plasticity Using CPTU Data (CPTU 데이터를 이용한 저소성 실트 지반의 부분배수 강도 평가)

  • Kim, Ju-Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.55-66
    • /
    • 2017
  • The standard piezocone penetration rate of 2 cm/s is proposed in specifications regardless of soil type. However, conditions of standard Piezo Cone Penetration (CPTU) Testings in silty soils with low plasticity vary from undrained to partially drained or fully drained penetration conditions. The partially drained shear strengths of Incheon, Hwaseong and Gunsan silty soils were estimated from the analysis results of the distributions of CPTU-based shear strengths. The CPTU-based shear strengths were compared between the undrained shear strength line and the fully drained shear strength line, which were determined from approximately ${\varphi}^{\prime}=3^{\circ}$ and ${\varphi}^{\prime}=15^{\circ}$, respectively. The internal friction angles obtained from the back analysis and UU-tests tended to increase with decreasing plasticity index, which range approximately from ${\varphi}^{\prime}=2^{\circ}$ to ${\varphi}^{\prime}=14^{\circ}$. The results matchs well with CPTU-based estimation results.

A Two Mobilized-Plane Model for Soil Liquefaction Analysis (액상화해석을 위한 두 개의 활성면을 가진 구성모델)

  • Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.173-181
    • /
    • 2006
  • A Two Mobilized-Plane Model is proposed for monotonic and cyclic soil response including liquefaction. This model is based on two mobilized planes: a plane of maximum shear stress, which rotates, and a horizontal plane which is spatially fixed. By controlling two mobilized planes, the model can simulate the principal stress rotation effect associated with simple shear from different $K_0$ states. The proposed model gives a similar skeleton behaviour for soils having the same mean stress, regardless of $K_0$ conditions as observed in laboratory tests. The soil skeleton behaviour observed in cyclic drained simple shear tests, including compaction during unloading and dilation at large strain is captured in the model. Undrained monotonic and cyclic response is predicted by imposing the volumetric constraint of the water on the drained or skeleton behaviour. This constitutive model is incorporated into the dynamic coupled stress-flow finite difference program of FLAC (Fast Lagrangian Analysis of Continua). The model was first calibrated with drained simple shear tests on Fraser River sand, and verified by comparing predicted and measured undrained behaviour of Fraser River sand using the same input parameters.

Effect of grain size on the shear strength of unsaturated silty soils

  • Onturk, Kurban;Bol, Ertan;Ozocak, Askin;Edil, Tuncer B.
    • Geomechanics and Engineering
    • /
    • v.23 no.4
    • /
    • pp.301-311
    • /
    • 2020
  • In this study, shear strength behavior of fine-grained soils was investigated under unsaturated conditions. The samples in the unsaturated state were subjected to a net normal stress (σ-ua) of 40 kPa and different matric suctions (ua-uw) of 50, 100 and 150 kPa. The matric suction values applied in the triaxial tests were selected according to the bubbling pressures determined from the SWC curves. The study was carried out on prepared re-constituted cylindrical samples by uniaxial consolidation of soil slurries. First, consolidated drained (CD) triaxial compression tests were performed on the saturated samples and the cohesion and angle of internal friction were determined. After that, drained triaxial compression tests under matric suctions were performed on the unsaturated samples. In order to obtain unsaturated test results, cohesion and internal friction angle values of saturated samples were used. The nonlinear surface representing the shear strength surface was approximated consisting of two planes (double planar surface). The reason for the nonlinear behavior of some soils is that the amount of sand content contained in it is relatively high and the bubbling pressure/permanent water content value is relatively low.

Effect of degree of compaction & confining stress on instability behavior of unsaturated soil

  • Rasool, Ali Murtaza
    • Geomechanics and Engineering
    • /
    • v.30 no.3
    • /
    • pp.219-231
    • /
    • 2022
  • Geotechnical materials such as silt, fine sand, or coarse granular soils may be unstable under undrained shearing or during rainfall infiltration starting an unsaturated state. Some researches are available describing the instability of coarse granular soils in drained or undrained conditions. However, there is a need to investigate the instability mechanism of unsaturated silty soil considering the effect of degree of compaction and net confining stress under partially and fully drained conditions. The specimens in the current study are compacted at 65%, 75%, & 85% degree of compaction, confined at pressures of 60, 80 & 120 kPa, and tested in partially and fully drained conditions. The tests have been performed in two steps. In Step-I, the specimens were sheared in constant water content conditions (a type of partially drained test) to the maximum shear stress. In Step-II, shearing was carried in constant suction conditions (a type of fully undrained test) by keeping shear stress constant. At the start of Step-II, PWP was increased in steps to decrease matric suction (which was then kept constant) and start water infiltration. The test results showed that soil instability is affected much by variation in the degree of compaction and confining stresses. It is also observed that loose and medium dense soils are vulnerable to pre-failure instability i.e., instability occurs before reaching the failure state, whereas, instability in dense soils instigates together with the failure i.e., failure line (FL) and instability line (IL) are found to be unique.

Influence of gradation on shear strength and volume change behavior of silty sands

  • Monkul, Mehmet Murat
    • Geomechanics and Engineering
    • /
    • v.5 no.5
    • /
    • pp.401-417
    • /
    • 2013
  • The results of an experimental program regarding the effects of gradation on shear strength and volume change behavior of silty sands are presented. Consolidated drained direct shear tests were performed on two clean base sands and twelve silty sands obtained by mixing those base sands with two different non-plastic silts at various fines contents (${\leq}$ 25%). Drained shear strengths were observed to be not significantly influenced by either base sand gradation or silt gradation or fines content for the studied range. Increasing fines content has increased the volumetric contraction of specimens at similar void ratio. However, the amount of increase in volumetric contraction of silty sands were found to be affected by silt gradation when other influencing factors such as fines content, base sand gradation and mineralogy were kept the same. Moreover, the amount of increase in volumetric contraction of silty sands were also found to be affected by base sand gradation when other influencing factors such as fines content, silt gradation and mineralogy were kept the same.

Determination of Critical State Parameters in Sandy Soils from Standard Triaxial Testing (II) : Experiment and Recommendation (표준삼축시험으로부터 사질토에서의 한계상태정수 결정에 관한 연구 (II) : 실험 및 추천)

  • 조계춘
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.77-92
    • /
    • 2003
  • A set of standard triaxial testing was performed to identify underlying physical processes and inherent limitations in the determination of critical state parameters in sandy soils. The experimental test results showed that the critical state friction angle for a given soil is constant regardless of drainage condition while the critical state line on the e-log p'space is significantly affected by drainage condition mainly because of insufficient strain attained in standard triaxial tests and strain localization effects in udrained tests. It appeared that the best method to determine critical state parameters in laboratory testing is to use homogeneous loose specimens under drained shear condition. In addition, a reference state parameter was suggested to design tests that will avoid dilatancy or strain localization effects in drained tests.

A Study on the Liquefaction Strength of Silt Containing Sands (실트를 포함하는 모래질 흙의 액상화강도에 관한 연구)

  • Hwang, Dae Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.243-252
    • /
    • 1993
  • Undrained cyclic simple shear tests and undrained cyclic triaxial tests were performed on silt containing sand in order to investigate the effects of silt contents on the liquefaction strength and shear characteristics of the sand. From the view that the difference of liquefaction strength for different content of silt stems from dilatancy characteristics of the sand, stress-dilatancy relation of the sand was obtained from drained triaxial test in which the mean stress was kept constant. Considerations on liquefaction behaviors were made by comparing the drained and undrained behaviors of sands during static shear test. It is concluded that ${\lambda}$-value of the stress-dilatancy relation will be closely related to the liquefaction strength.

  • PDF