• Title/Summary/Keyword: drainage material

Search Result 311, Processing Time 0.033 seconds

Determination of Volume Porosity and Permeability of Drainage Layer in Rainwater Drainage System Using 3-D Numerical Method (3차원 수치해석기법을 이용한 우수배수시스템 배수층의 체적공극과 투수도 결정)

  • Yeom, Seong Il;Park, Sung Won;Ahn, Jungkyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.449-455
    • /
    • 2019
  • The increase in impermeable pavement from recent urbanization has resulted in an increase in surface runoff. The surface runoff has also increased the burden of the existing drainage system. This drainage system has structural limitations in that the catchment area is reduced by the waste particles transported with the surface runoff. In addition, the efficiency of the drainage system is decreased. To overcome these limitations, a new type of drainage system with a drainage layer was developed and applied. In this study, various volume porosity and permeability of the lower drainage layer were simulated using ANSYS CFX, which is a three dimensional computational fluid dynamics program. The results showed that the outlet velocity of the 35% volume porosity was faster than that of the 20% and 50% cases, and there was no relationship between the volume porosity and drainage performance. The permeability of the drainage layer can be determined from the particle size of the material, and a simulation of five conditions showed that 2 mm sand grains are most suitable for workability and usability. This study suggests appropriate values of the volume porosity and particle size of the drainage layer. This consideration can be advantageous for reducing and preventing flood damage.

Development of a Drainage System to Mitigate Moisture Damage for Bridge Deck Pavements (교면포장의 수분손상 저감을 위한 체류수 배수공법 개발)

  • Lee, Hyun-Jong;Kim, Hyung-Bae;Seo, Jae-Woon
    • International Journal of Highway Engineering
    • /
    • v.9 no.2 s.32
    • /
    • pp.129-140
    • /
    • 2007
  • A major purpose of this study is to develop a drainage system that can quickly drain water penetrated into pavement layers to mitigate pot holes which is one of the major distress types in bridge deck pavements. This system can be established by applying a thin drainage layer between waterproof and pavement layers. The most important elements for this system are the performance of waterproof layer and construction technique for the thin drainage layer. The porous asphalt mix with the maximum aggregate size of 10mm is first developed based on the porous asphalt mix design guide proposed by NCAT, and various physical and mechanical tests are performed to confirm that the porous mix satisfies all the specification requirements. In addition, a series of laboratory tests including low-temperature bending and bonding strength tests for the MMA(Methyl Methacrylate) type of waterproofing material. It is observed from the tests that the MMA material satisfies all the specification requirements. To evaluate the Reld performance of the drainage system, a field study has been conducted on a relatively small size bridge. The QC/QA tests are conducted on the both waterproofing and pavement materials. It has been found that the drainage system works well to drain the water penetrated into the pavement layers.

  • PDF

THE DEVELOPMENT OF FOAMING AGENTS USING SLES & DH-109EX

  • Hu Rui;Kim, Jeong-Hun;Kim, Min-Kyn;Kang, Young-Goo;Kim, Hong
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.582-589
    • /
    • 1997
  • Experiments were conducted to develop foaming agents by using SLES and DH-l09EX as raw material. PG (Propylene glycol) and BC (Butyl cellusolve) were adopted as subsidiary material. The undiluted foam solution was produced with these materials. This solution determined the expansion ratio, viscosity, drainage time and extinguishing ability of the final product. The results indicate that the expansion ratio is over 16 and drainage time is over one minute. The extinguishing ability for SLES system was succeeded in the unit of B-0.5.

  • PDF

Mechanical Property and Problems of the Self-expandable Metal Stent in Pancreaticobiliary Cancer

  • Thanawat Luangsukrerk
    • Journal of Digestive Cancer Research
    • /
    • v.10 no.2
    • /
    • pp.92-98
    • /
    • 2022
  • Self-expandable metal stent (SEMS) is effective for biliary drainage, especially in pancreaticobiliary cancer. The mechanical properties, material, and design of SEMS are important in preventing recurrent biliary obstruction and complication. Radial and chronic expansion forces play roles in preventing stent migration and collapse. Complications, such as stent impaction, cholecystitis, and pancreatitis, were related to the axial force. The nickel-titanium alloy shows more flexibility, conformability, and optimal axial force compared to previously used stainless steel. Additionally, the stent structure affected the mechanical properties of SEMS. Therefore, understanding the mechanical properties, material, and design of SEMS will provide the best outcome for biliary drainage, as well as better SEMS development.

탄.소성 Work-Hardening 모델에 대한 Program 개발 -Lade 모델을 중심으로-

  • 박병기;정진섭
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.255-270
    • /
    • 1991
  • In recent years. finite element methods have been used with increasing effectiveness in analysis of displacements and stresses within soil masses. However, one of the weakest links in the analytical representations used in these methods is the models of the material behaviour. Herein is discribed a modification to the finite element methods that allows solution problems with realistic stress-strain relation for soils. A finite element program for the precision prediction of the stress distribution within foundation has been developed using the elasto-plastic Work-Hardening model. The developed program is verified by comparing the results of this study with the tested results for Sacramento river sand. The main results obtained from the numerical examples are as follows: The vertical total stress increments are insensitive to drainage and constitutive equation of materials. The horizontal total stress increments are considerably affected by the drainage and constitutive equation of materials. The maximum shear stresses are affected by the drainage only in elasto-ptastic meterirals. The excess pore water pressures and the volumetric strains not only are considerably affected by the constitutive equation of materials. but also have almost similar distribution.

  • PDF

Improvement of Drainage Material for Attached Algae Growth Control in Sedimentation Basin (부착성장 조류 제어를 위한 침전지 배수로의 재질개선에 관한 연구)

  • Jun, Dae-Young;Lim, Byung-Ran;Yu, Hyun-Sun;Cho, Jin-Woo;Hwang, Jong-Hyuk;Ahn, Kyu-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.2
    • /
    • pp.193-199
    • /
    • 2005
  • The objective of this study was to investigate the characteristics of adhesion and detachment of algae on various materials of drainage canal in the sedimentation basin. The influence of surface washability, surface roughness, phosphorous concentration was studied using stainless steel, cement block and ceramic panel. The algae attached content of cement block was higher than that of the ceramic coating panel. The attachment varied significantly with respect to exposure time and different materials. the attachment was higher on rough surface (cement block) when compared to smooth surfaces. The content of attached algae increased with increasing phosphorous concentration in water. The detachment efficient of algae was higher on ceramic panel.

Evaluating Unsaturated Hydraulic Properties of Compacted Geomaterials in Road Foundations (II) : Numerical Analysis (다져진 도로기초 재료의 불포화투수특성 평가 (II) : 수치해석)

  • Sung, Yeol-Jung;Park, Seong-Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1D
    • /
    • pp.83-90
    • /
    • 2011
  • A need still exists that the unsaturated condition is to be considered when evaluating the infiltration and drainage capacity for compacted geomaterials in road foundation or embankments. For this reason, numerical analysis were used to analyze the time-dependent unsaturated infiltration and drainage condition depending on various geomaterial types. Therefore, laboratory data from the soil-water characteristic curve tests on geomaterials were adopted from previous studies. In addition, the unsaturated permeability was estimated using SWCC. Then the infiltration and drainage performance of unsaturated compacted soils were evaluated under various conditions based on the proposed method. The results demonstrated that the effect of initial suction and SWCC path on each material could be substantial and the proper application on analysis is very important to enhance the prediction on each capacity.

The Improvement Method of Railway Roadbed (철도노반의 개량방법)

  • Sim Jae-Bum
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.621-626
    • /
    • 2005
  • A major part of permanent way maintenance effort is justified by inadequacies in the track substructure and in particular in drainage conditions, which need to be put right across the entire network. In most cases nowadays, improvements of the substructure can be carried out on rail to a high standard of quality. However, this entails substantial movements of material for the removal of spoil and provision of new material. In the future, recycling of old material on site, and use of geosynthetics, will be necessary to help considerably reduce this volume.

  • PDF

A Case Study on the Application of Gravel Pile in Soft Ground (Gravel Pile에 의한 연약지반 개량 시험시공 사례연구)

  • 천병식;고용일;여유현;김백영;최현석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.223-230
    • /
    • 2000
  • Sand drain as a vertical drainage is widely used in soft ground improvement. Recently, sand, the principal source of sand drain, is running out. The in-situ tests were carried out to utilize gravel as a substitute for sand. In-situ tests area was divided into two areas by material used. One is Sand Drain(SD) and Sand Compaction Pile(SCP) area, the other is Gravel Drain(GD) and Gravel Compaction Pile(GCP) area. Both areas were monitored to obtain the information on settlement, pore water pressure and bearing capacity by measuring instruments for stage loading caused by embankment. The results of measurements were analyzed, The clogging effect was checked at various depth in gravel column after the test. According to the test results, the settlement was found to be smaller in gravel drain than in sand drain. The increase in bearing capacity by gravel pile explains the result. The clogging effect was not found in gravel column. It is assumed that gravel is relatively acceptable as a drainage material. Gravel is considered to be a better material than sand for bearing capacity, and it is found that bearing capacity is larger when gravel is used as a gravel compaction pile than as a gravel drain.

  • PDF

Assessment of Field Application of Contaminated Sediment Removal Efficiency Using PVDF Combined Hybrid Tunnel Drainage (PVDF(Polyvinylidene Fluoride) 필름형 트랜스듀서 하이브리드 터널배수재에 대한 오염퇴적물 제거효율의 현장 적용성 평가)

  • Xin, Zhen-Hua;Moon, Jun-Ho;Kim, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.513-519
    • /
    • 2019
  • Typically, contaminated sediments cause clogging of the drain pipe, which increases the residual water pressure in the drain pipe; this study constructed a system for improving drainage efficiency of tunnels by reducing physical and chemical obstructions through ultrasonic energy generated by a PVDF film. The developed hybrid drainage system utilized a PVDF material film fused with an existing drainage tunnel and maintenance system resulting in the ability to initialize the reverse piezoelectric effect, which was evaluated through an on site application. In order to investigate the maintenance performance of the tunnel drainage system, contaminated sediments were simulated in a drainage pipe to test the effect of ultrasonic conditions on drainage efficiency in the laboratory. As a result of applying the developed portable equipment, the ultrasonic energy was generated for about 20 minutes resulting in a reduction of 74.62% of the contaminated sediments and improving drainage efficiency. From the tunnel, acoustic pressure measurements were taken to calculate the response rate while taking into account the laboratory results. In addition, PVDF film was attached to the transverse and longitudinal side of the drainage pipes where contaminated sediments occur most often in the field tunnel. these calculations show contaminant removal was 90% effective.