• Title/Summary/Keyword: drag performance

Search Result 451, Processing Time 0.031 seconds

Effects of Geometric Parameters of a Bobsleigh on Aerodynamic Performance (봅슬레이의 형상변화가 공력성능에 미치는 영향)

  • Shim, Hyeon-Seok;Jung, Hyo-Yeon;Kim, Jun-Hee;Kim, Kwang-Yong
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.3
    • /
    • pp.233-240
    • /
    • 2015
  • Analysis of the aerodynamic performance of a bobsleigh has been performed for various types of bobsleigh body shape. To analyze the aerodynamic performance of the bobsleigh, three-dimensional Reynolds-averaged Navier-Stoke equations were used with the standard k-${\varepsilon}$ model as a turbulence closure. Grid structure was composed of unstructured tetrahedral grids. The radii of curvature of cowling, and height and length of front bumper at the tip on the drag coefficient were selected as geometric parameters. And, the effects of these parameters on the aerodynamic performance, i.e., the drag coefficient, were evaluated. The results shows that the aerodynamic performance is significantly affected by the height of front bumper and radius of curvature.

SHAPE OPTIMIZATION OF UCAV FOR AERODYNAMIC PERFORMANCE IMPROVEMENT AND RADAR CROSS SECTION REDUCTION (공력 향상과 RCS 감소를 고려한 무인 전투기의 형상 최적설계)

  • Jo, Y.M.;Choi, S.I.
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.56-68
    • /
    • 2012
  • Nowadays, Unmanned Combat Air Vehicle(UCAV) has become an important aircraft system for the national defense. For its efficiency and survivability, shape optimization of UCAV is an essential part of its design process. In this paper, shape optimization of UCAV was processed for aerodynamic performance improvement and Radar Cross Section(RCS) reduction using Multi Objective Genetic Algorithm(MOGA). Lift and induced drag, friction drag, RCS were calculated using panel method, boundary layer theory, Physical Optics(PO) approximation respectively. In particular, calculation applied Radar Absorbing Material(RAM) was performed for the additional RCS reduction. Results are indicated that shape optimization is performed well for improving aerodynamic performance, reducing RCS. Further study will be performed with higher fidelity tools and consider other design segments including structure.

AERODYNAMIC STUDY ON BOBSLEIGH BUMPER SHAPE (봅슬레이 범퍼 형상에 대한 공력학적 연구)

  • Lee, Y.N.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.20 no.2
    • /
    • pp.37-45
    • /
    • 2015
  • A parametric study on the shapes of bobsleigh bumpers has been performed to reduce the aerodynamic drag. Effects of geometric parameters, such as leading angle of leading bumper, the ratio of minimum width to maximum width of leading bumper, the ratio of leading bumper length to trailing bumper length, trailing angle of trailing bumper, and the ratio of bumper height to installation location of bumper from the bottom of bobsleigh, on the aerodynamic performance of the bobsleigh were estimated using 3-D Reynolds-averaged Navier-Stokes equations. The turbulence was analyzed using the shear stress turbulence model. Reynolds number based on the hydraulic diameter of the external flow channel was in the range of 150,000~1,000,000. Numerical results for drag coefficient were validated compared to experimental data. Ranges of the five geometric parameters were determined according to the rule of Federation Internationale de Bobsleigh et de Tobaganning. The aerodynamic performance of the bobsleigh sled was most sensitive to the leading angle of leading bumper and the ratio of minimum width to maximum width of leading bumper.

The Effect of the Gurney Flap on NACA 00XX Airfoil (NACA 00XX 익형에 대한 Gurney 플랩의 영향)

  • Yoo, Neung-Soo
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.59-65
    • /
    • 2002
  • The objective of this study is to provide the quantitative and qualitative computational data about the aerodynamic performance of Gurney flap on NACA 00XX airfoils and to show the optimum Gurney flap height for each airfoil. The test was performed on 7 different airfoils from NACA 0006 to NACA0024, which have a 3% chord(=c) thickness interval. For every NACA 00XX airfoil, Gurney flap heights were changed by 0.5% or 0.25% chord interval from 0 to 2.0%c to study their effects. The aerodynamic characteristics of clean and Gurney flap airfoil were compared, and the influences of Gurney flap on each airfoil were compared. As a CFD (Computational Fluid Dynamics) solver, FLUENT, based on Navier-Stokes code, was used to calculate the flow field around the airfoil. The fully-turbulent results were obtained using the standard $k-{\varepsilon}$ two-equation turbulence model. The test results showed that Gurney flap increased the lift coefficient much more than the drag coefficient over a certain range of the lift coefficient, so the lift-to-drag ratio, which is the important index of airfoil performance, was increased. Based on the test results, the relationship between the airfoil thickness and the optimum Gurney flap heights was suggested.

  • PDF

A Practice of Developing New Environment-friendly System by Composites

  • Kim, Yun-Hae;Yang, Dong-Hun;Jo, Young-Dae;An, Seung-Jun;Park, Se-Ho;Yoon, Sung-Won
    • Journal of Engineering Education Research
    • /
    • v.13 no.5
    • /
    • pp.8-14
    • /
    • 2010
  • This study intends to study about the blade performance loss occurred due to the variation in the shape of an airfoil from attachment/non-attachment of an erosion shield for the hovercraft. The model in this study has used NACA44XXseries, has designed NACA44XX-series by using the Auto CAD, and it designed the shape that has attached an erosion shield to this model according to the thickness and length. By using these models, a grid was generated by GAMBIT and the lift coefficient ($C_l$) and the drag coefficient ($C_d$) were calculated FLUENT code for flow analysis. Through this, the $C_l$ and $C_d$ have calculated and compared the lift-to-drag ratio that an indicator of airfoil performance according to the shape and attachment/non-attachment of erosion shield.

  • PDF

Performance analysis of a low drag generated midwater trawl using the model experiments and the numerical analysis (모형실험과 수치해석을 이용한 저항 저감형 중층 트롤어구의 성능 해석)

  • KIM, Jieun;LEE, Jihoon;PARK, Seongho;LEE, Chun Woo;PARK, Subong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.2
    • /
    • pp.115-125
    • /
    • 2017
  • Fuel consumption in fisheries is a primary concern due to environmental effects and costs to fishermen. Much research has been carried out to reduce the fuel consumption related to fishing operations. The fuel consumption of fishing gear in fishing operation is generally related to hydrodynamic resistance on the gear. This research is to propose a low drag generated midwater trawl in terms of the gear design improvement using simulations. The results from the simulation were verified with results that mirrored the model experiments. From the results, the resistance force of the proposed gear decreased to 29% compared to that of the current gear. Furthermore, the gear performance also improved with increased gear mouth compared to the current one. Therefore, the proposed gear will be helpful to reduce the greenhouse gases from fishing operation. It will also contribute to the fishing industry by saving fuel.

Design of Drag-type Vertical Axis Miniature Wind Turbine Using Arc Shaped Blade (아크형 날개를 이용한 항력식 수직축 소형 풍력 터빈 설계)

  • Kim, Dong-Keon;Kim, Moon-Kyung;Cha, Duk-Keun;Yoon, Soon-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.2 s.35
    • /
    • pp.7-12
    • /
    • 2006
  • This study is to develop a system of electric power generation utilizing the wind resources available in the domestic wind environment. We tested drag-type vortical wind turbine models, which have two different types of blades: a flat plate and circular arc shape. Through a performance test, conditions of maximum rotational speed were found by measuring the rpm of wind turbine. The rotational speed was measured by a tachometer in a wind tunnel and the tunnel wind speed was by using a pilot-static tube and a micro manometer. The performance test for a prototype was accomplished by calculating power, power coefficient, torque coefficient from the measurement of torque and rpm by a dynamometer controller From the measurements for miniature turbine models with two different blades, the circular arc shape was found to Produce a maximum rotational speed for the same wind velocity condition. Based on this result, the prototype with the circular arc blade was made and tested. We found that it produces 500W at the wind velocity of 10.8 m/s and the power coefficient was 20%.

Study on the Performance Characteristics of Centrifugal Pump with Drag-reducing Surfactant Additives

  • Wang, Lu;Li, Feng-Chen;Dong, Yong;Cai, Wei-Hua;Su, Wen-Tao
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.2
    • /
    • pp.223-228
    • /
    • 2011
  • The performance characteristics of centrifugal pump were measured experimentally when running with tap water and drag-reducing surfactant (Octadecyl dimethyl amine oxide (OB-8)) solutions. Tests have been performed on five cases of surfactant solutions with different concentrations (0ppm (tap water), 200ppm, 500ppm, 900ppm and 1500ppm) and four different rotating speeds of pump (1500rpm, 2000rpm, 2500rpm and 2900rpm). Compared with tap water case, the experimental results show that the total pump heads for surfactant solution cases are higher. And the pump efficiency with surfactant solutions also increases, but the shaft power for surfactant solutions cases decreases compared to t hat for tap water. There exists an optimal temperature for surfactant solutions, which maximizes the pump efficiency.

A Study on the Pumping Performance of a Disk-type Drag Pump (원판형 드래그펌프의 배기특성에 관한 연구)

  • Hwang, Young-Kyu;Heo, Joong-Sik;Choi, Wook-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.860-869
    • /
    • 2000
  • Numerical and experimental investigations are performed for the molecular transition and slip flows in pumping channels of a disk-type drag pump. The flow occurring in the pumping channel develops from the molecular transition to the slip flow traveling downstream. Two different numerical methods are used in this analysis: the first one is a continuum approach in solving the Navier-Stokes equations with slip boundary conditions, and the second one is a stochastic approach through the use of the direct simulation Monte Carlo method. In the experimental study, the inlet pressures are measured for various outlet pressures in the range of 0.1{\sim}4Torr. From the present study, the numerical results of predicting the performance, obtained by both methods, agree well with the experimental data for the range of Knudsen number $Kn{\leq}0.1$ (i.e., the slip flow regime). But the results from the second method only agree with the experimental data for Kn>0.1(i.e., the molecular transition regime)

An Experimental Study on the Effect of Performance for Channel of Disk-type Drag Pump Rotors (원판형 드래그펌프 회전자의 채널이 성능에 미치는 영향에 관한 실험적 연구)

  • Kwon, Myoung-Keun;Lee, Soo-Young;Hwang, Young-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1703-1708
    • /
    • 2004
  • In this study, we are investigated experimentally the pumping characteristics about the pumping channel shapes of disk-type drag pump (DTDP). We are experimented the pumping performance about the rotors which have channel or do not exist. The channel disk-type rotor has spiral channels both upper and lower part, and stator is planar. The planar disk-type rotor hasn't channel and stator has spiral channels both upper and lower part. The flow-meter method is adopted to calculate the pumping speed. Compression ratio and pumping speeds for the nitrogen gas are measured under the inlet pressure range of 0.001 ${\sim}$ 4 Torr. The maximum of compression ratio was about 3300 for three-stage DTDP (channel disk-type rotor), 1000 for four-stage (planar disk-type rotor) and two-stage DTDP (channel disk-type rotor) at zero throughput. The ultimate pressure was $1.6{\times}10^{-6}$ Torr for three-stage DTDP (channel disk-type rotor), $2.5{\times}10^{-6}$ Torr for four-stage DTDP (planar disk-type rotor).

  • PDF