• Title/Summary/Keyword: drag friction

Search Result 181, Processing Time 0.026 seconds

Application of Lumley's Drag Reduction Model to Two-Phase Gas-Particle Flow in a Pipe(I) - Mechanism of Momentum Transfer- (고체분말이 부상하는 2상 난류 수직관 유동에 대한 Lumley의 저항감소 모델의 적용(I) - 운동량 전달 기구)

  • 한기수;정명균;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.6
    • /
    • pp.1301-1309
    • /
    • 1989
  • 본 연구의 목적은 Lumley의 저항감소 모델을 사용하여 여러 부하도하에서 부유유동의 유동 특성을 관찰하는 것으로, 특히 저항감소가 일어날 때와 일어나지 않을 때의 유동특성을 알아 보고자 한다.

Effects of the Relative Amounts of Graphite and Antimony Trisulfide (Sb$_2$S$_3$) on Brake Performance of Non-asbestos Organic (NAO) Type Brake Linings (흑연과 삼황화안티몬의 상대적인 함량에 따른 비석면 유기질 마찰재의 제동특성에 관한 연구)

  • Kim, Seong-Jin;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.17 no.5
    • /
    • pp.351-357
    • /
    • 2001
  • Tribological behavior of NAO type brake linings containing different volume ratios of graphite and Sb$_2$S$_3$ was investigated using a scale dynamometer. Three different test modes consisting of stop, drag, and fade tests were employed to elucidate the effect of the solid lubricants on brake performance. Results of this work showed that the two solid lubricants, graphite and Sb$_2$S$_3$, significantly affected friction characteristics at various braking situations. Compared with the brake linings containing a single lubricant, the brake linings containing both solid lubricants showed better friction stability due to the synergistic effect of the two disparate lubricants during the stop and the drag test. In particular, in the case of containing two solid lubricants, the brake lining with higher contents of graphite showed better fade resistance than others.

Measurement Criteria for Drag-Sled Type Slip Resistance Tester Based on Human Gait and Slip (인간의 보행 및 미끄러짐 특성에 기반한 끌기형 미끄러짐 저항 측정 조건)

  • Park, Jae-Suk;Kwon, Hyuck-Myun;Oh, Whan-Sup
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.179-184
    • /
    • 2012
  • This study was performed to find out the measurement criteria of slip resistance from analysis of human gait and slips. Many kinds of slip resistance testers were developed based on mechanical friction testers. But, there are, as yet, no unambiguous slip resistance measurement methodologies and generally accepted safety criteria or safety thresholds for estimating slipping hazard exposures. Also, there are variety of measuring conditions between those testers. The measurement criteria should be tested within the range of human slipping conditions observed in biomechanical studies. It's results should clearly consider whether the devices reflect the human slipping conditions. In this study a dragsled type friction tester, which was constructed in accordance with ISO 15133 basically, was used. Test conditions were set in order to determine the range of measurement criteria. It is shown that drag velocity should be more than 1 m/s, acceleration be more than 10 $m/s^2$, contact time be less than 0.1sec, and contact pressure be within 350~400 kPa.

The Degradation of the Effect of Drag Reduction in Synthetic Polymer Solution (합성고분자 첨가제에 의한 마찰저항감소효과의 퇴화에 관한 연구)

  • 윤석만;최형진;김종보
    • Journal of Energy Engineering
    • /
    • v.7 no.2
    • /
    • pp.163-171
    • /
    • 1998
  • Degradation of polymer additives is enhanced at higher temperature of the test solutions. The degradation of Co-polymer solution was investigated experimentally in a closed loop at the temperature of 6$0^{\circ}C$ and 8$0^{\circ}C$ with various polymer concentrations of 100, 200, 400, 600 ppm in order to see the effect of temperature and polymer concentration with time. The degradation effect were found to be more dependent on temperature than mechanical shear. The friction factor versus Reynolds number curves show that in the range of Reynolds number number 50,000~150,000 the friction was decreased as Reynolds number increased and the friction of solution at low temperature approached to Virk's maximum drag reduction asymptote. For constant flowrates and temperatures the degradation effect was found to be less likely in higher polymer concentration. For constant flowrates and polymer concentrations the degradation rates are affected mainly by temperature. At the temperature of 8$0^{\circ}C$ and polymer concentration of 100 ppm, drag reduction effect was disappeared after 4 hours. However, this thermal degradation could be avoided with additional materials such as surfactants which are supposed to enhance the bonding forces between polymer molecules.

  • PDF

Investigation of Skin Friction Reduction Mechanism of Outer-Layer Vertical Blades Using POD Analysis (POD 기법을 이용한 경계층 외부 수직날의 마찰저항 저감 기구에 관한 관측)

  • An, Nam Hyun;Park, Seong Hyeon;Chun, Ho Hwan;Lee, Inwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.567-575
    • /
    • 2013
  • A POD analysis based on time-resolved PIV measurements in a circulating water channel has been conducted to identify the skin friction reduction mechanism of outer-layer vertical blades. A recent PIV measurement indicated 2.73% and 7.95% drag reduction in the blade plane and the blade-in-between plane, respectively. In the present study, the influence of vertical blades array upon the characteristics of the turbulent coherent structures was analyzed by the POD method. It is observed that the vortical structures are cut and deformed by the blades array and that their temporal evolution is strongly associated with the skin-friction drag reduction mechanism in the turbulent boundary layer flow.

Optimal Design and Analysis of Ducted Fan Clutch With or Without Mechanical Lock-up (기계적 잠금장치의 적용여부에 따른 덕티드팬 클러치의 최적설계 및 분석)

  • Su-chul Kim;Jae-seung Kim;Sang-gon Moon;Geun-ho Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.1
    • /
    • pp.10-15
    • /
    • 2023
  • Wet multi-disk clutch, a power switching device of the ducted fan, was optimized and results were analyzed. The clutch was divided into two types depending on whether a mechanical lock-up was applied or not. It was optimized under each design condition. Transfer torque capacity, friction material surface pressure, friction surface temperature, and drag torque were calculated as factors to optimize the clutch. The volume of separator plate and drag torque were used as the objective function for optimization. In the case of Type 1, which did not include a mechanical lock-up, the clutch could be operated regardless of the pitch angle of the ducted fan. However, the outer diameter of the friction surface was doubled, the volume was increased by 5~7 times, and the drag torque was increased by 7~12 times compared to those of Type 2, which included a mechanical lock-up.

Study of Anti-Fading Phenomena during Automotive Braking (자동차 제동시 나타나는 Anti-Fading현상에 관한 연구)

  • Lee, Jung-Ju;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.14 no.1
    • /
    • pp.70-78
    • /
    • 1998
  • Two different friction materials (organic and low-metallic pads) for automotive brakes were studied to investigate the anti-fading phenomena during stop. The anti-fading phenomena were pronounced more in the case of using low metallic friction materials than organic friction materials. The main cause of the anti-fading phenomena was the high dependence of friction coefficient on a sliding speed. The anti-fading was prominent when the initial brake temperature was high in the case of low-metallic friction materials due to the strong stick-slip event at high temperature. On the other hand, the anti-fading was not severe in organic friction materials and the effect was reduced at high braking temperature due to the thermal decomposition of organic friction materials. The strong stickslip phenomena of low metallic friction materials at high temperature induced high torque oscillations during drag test. During this experiment two different braking control modes (pressure controlled and torque controlled modes) were compared. The type of the control mode used for brake test significantly affected the friction characteristics.

Drag reduction in channel flow using stationary distributed blowing and suction (고정된 분포 분사/흡입을 통한 채널 유동의 저항 감소)

  • Kim, Joo-Hyun;Choi, Hae-Cheon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.195-198
    • /
    • 2006
  • The possibility of skin friction reduction in laminar channel flow is investigated when the flow is subjected to stationary distributed surface blowing and suction. Blowing and suction provided at the channel walls is steady in time but varies as a sine function along the streamwise direction. The skin friction changes depending on the wavelength and amplitude of the actuation. Especially, the skin friction is reduced below that of fully developed laminar flow as the wavelength decreases and amplitude increases. The optimal wavelength of producing minimum skin friction is $\pi/2{\delta}$, where $\delta$ is the channel half-height It is observed that the distributed blowing and suction induces strong negative Reynolds shear stress in the near-wall region at the end of the suction part.

  • PDF

Friction Reduction Properties of Evaporation Coated Petroleum and Silicone Oil Lubricants (증발 코팅법으로 증착된 광유와 실리콘 오일 윤활제의 마찰 저감 특성)

  • Yoo, Shin Sung;Kim, Dae Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.864-869
    • /
    • 2013
  • As the size of mechanical components decreases, capillary forces and surface tension become increasingly significant. A major problem in maintaining high reliability of these small components is that of large frictional forces due to capillary action and surface tension. Unlike the situation with macro-scale systems, liquid lubrication cannot be used to reduce friction of micro-scale components because of the excessive capillary and drag forces. In this work, the feasibility of using evaporation to coat a thin film of organic lubricant on a solid surface was investigated with the aim of reducing friction. Petroleum and silicone oils were used as lubricants to coat a silicon substrate. It was found that friction could be significantly reduced and, furthermore, that the effectiveness of this method was strongly dependent on the coating conditions.

A NUMERICAL STUDY ON THE EFFECT OF VEHICLE-TO-VEHICLE DISTANCE ON THE AERODYNAMIC CHARACTERISTICS OF A MOVING VEHICLE (차간 거리가 주행차량의 공력특성에 미치는 영향에 관한 수치해석 연구)

  • Kim, D.G.;Kim, C.H.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.66-71
    • /
    • 2014
  • Aerodynamic design of a vehicle has very important meaning on the fuel economy, dynamic stability and the noise & vibration of a moving vehicle. In this study, the correlation of aerodynamic effect between two model vehicles moving inline on a road was studied with the basic SAE model vehicle. Drag and lift are two main physical forces acting on the vehicle and both of them directly effect on the fuel economy and driving stability of the vehicle. For the research, the distance between two vehicles is varied from 5m to 30m at the fixed vehicle speed, 100km/h and the side-wind was assumed to be zero. The main issue for this numerical research is on the understanding of the interaction forces; lift and drag between two vehicles formed inline. From the study, it was found that as the distance between two vehicles is closer, the drag force acting on both the front and rear vehicle decreases and the lift force has same trend for both vehicle. As the distance(D) is 5m, the drag of the front vehicle reduced 7.4% but 28.5% for the rear-side vehicle. As the distance is 30m, the drag of the rear vehicle is still reduced to 22% compared to the single driving.